

Learning and Intelligent Systems

Joaquim Ortiz-Haro¹, Erez Karpas², Marc Toussaint¹, Michael Katz³

Task and Motion Planning (TAMP)

Symbolic Goal Dark green on light green Blue ball on dark green

- Symbolic plans often fail in the geometric level [1]
- Calls to the motion optimizer are expensive

Manipulation tasks solved by our algorithm (Push and Blocks).

Logic Geometric Program (LGP)

Joint optimization of logical decision variables $\langle a_1 \dots a_K \rangle$, $\langle s_1 \dots s_K \rangle$ and a continuous trajectory $x(t) : t \in \mathbb{R} \to \mathbb{R}^n$ [3].

$$\begin{aligned} \mathsf{LGP} \min_{\substack{x, s_{1:K}, a_{1:K}, K}} \sum_{k=0}^{K-1} \int_{kT}^{(k+1)T} c(x(t), s_{0:k}) dt & (1a) \\ x(0) &= x_{0}, \\ \forall k \in 0, \dots, K : \\ h_{k}(x(t), s_{0:k}) &\leq 0, \ t \in [kT, (k+1)T], \\ s_{k} &= s_{k-1}[a_{k}], \\ g \subseteq s_{\mathcal{K}}. \end{aligned}$$

Logic: SAS+ Planning task $\Pi = \langle \mathcal{V}, \mathcal{A}, s_0, g, cost \rangle$.

Geometry: Nonlinear constraints $h(\cdot)$ and cost $c(\cdot)$ on the trajectory. Logic sequence $\langle a_1 \dots a_K \rangle$ implies nonlinear program NLP $(a_{1:K})$ on x(t). Using only mode-switch configurations $x(t_k)$ we define the *Pose* and *Se*quence bounds of a $NLP(a_{1:K})$.

Conflict-Directed Diverse Planning for Logic-Geometric Programming

Iterative Logic Planning for LGP	Diverse Logical Planning for LGP
Logic Planner + diversity + conflict extraction Solution	How to choose which plan π to test next? \rightarrow Prefix Novelty $np(\pi, LP) := -\min\{k \mid \forall \pi' \in LP, \pi'k \neq \pi k\}$ (LP is set of plans)
planning task	 High chance to extract a short conflict from that plan. Explore the space of logical plans.
Reformulation Infeasible prefix	Experimental Results
Prefixes as Geometric Conficts Theorem: If a sequence of logical actions π is geometrically infeasible, any sequence of actions π' which contains π as a prefix is also infeasible. Tree Forbidding Compilation • Forbid $\langle a_1 \dots a_K \rangle$ as a prefix, instead of as a plan [2]. • Simultaneously forbid multiple prefixes with a prefix tree $T = (N, E)$ Reformulated planning task $\Pi_T^- = \langle \mathcal{V}', \mathcal{A}', s'_0, g', cost' \rangle$ contains addi- tional variables and action operators to ensure that new plans do not start with the infeasible prefixes.	 Benchmark 20 problems in 3 domains: Blocks, Hanoi, Push. Metrics Computational time, pose and sequence bounds NLPs. Baselines Multibound Tree Search Algorithm (MBTS) for LGP [3]. Results Our approach (N=1, eager conflict extraction) is faster (16 vs 2) solves more problems (18 vs 12) than any of the MBTS baselines. Diverse planning with the novelty measure improves over incremplan generation (total time 833 vs 976 seconds, 115 vs 145 seq bour Metareasoning is faster than eager and lazy conflict extraction (78 833 seconds, and 57 vs 115 solved sequence bounds)
	Conclusion
Conflict Extraction Imagine that a plan $\langle a_1 \dots a_K \rangle$ is geometrically infeasible (NLP($a_{1:K}$) is infeasible). Which conflict do we return? Note: we can choose to evaluate NLP($a_{1:k}$) for any $k = 1 \dots K$.	 Systematic interface between a PDDL-Planner and a nonlinear so Key: Identify and encode geometric conflicts (infeasible prefixes). Extension with novelty selection criteria and metareaso Outperform previous solvers for LGP.
Lazy : return $\langle a_1 \dots a_K \rangle$ Eager : find min k s.t $\langle a_1 \dots a_k \rangle$ is infeasible (with binary search) Metareasoning • Middle-ground approach between lazy and eager.	Future Work: 1 - Combine geometric and logical heuristics (with i mation about feasible prefixes). 2- Detect and encode stronger con (subset of infeasible constraints). Preprint: A Conflict-driven Inte between Symbolic Planning and Nonlinear Constraint Solving.
 When searching for conflict in a_{1:K}, we have a range [<i>I</i>, <i>u</i>] such that a_{1:u} is not geometrically feasible, while a_{1:I} yes. Should we return a_{1:u} as conflict or search a smaller conflict (between <i>L</i>, <i>u</i>)? 	References
Formulate a Markov Decision Process (MDP) • States $S_{\pi} = \{\langle I, u \rangle\}$ – current range of the search. Terminal states: converged search $\langle u, u \rangle$. Start: $\langle 0, K \rangle$. • Actions at $\langle I, u \rangle$: A) stop searching (reach state $\langle u, u \rangle$), or B) check	 Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual Review of Control, Robotics, and Autonomous Systems, 4(1):265–293, 2021. Michael Katz, Shirin Sohrabi, Octavian Udrea, and Dominik Winterer. A novel iterative appro top-k planning. In Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, pages 132-
any node $l < m < u$. Estimate transition probabilities and rewards from past plans evaluation.	 AAAI Press, 2018. [3] Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, and Joshua B. Tenenbaum. Differentiable p and stable modes for tool-use and manipulation planning. In <i>Robotics: Science and Systems X Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018</i>, 2018.

¹TU Berlin, ²Technion, ³IBM Research

