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Introduction I

Combine task planning (what? e.g. "Pick") with motion planning (how? e.g. "Collision
Free motion")

Initial State Symbolic Goal

Dark green block on light green block
Blue ball on dark green block

Symbolic plans are only a necessary condition. They often fail in the geometric level!
E.g. valid symbolic action "(pick blue-ball with left-robot)" fails.
Calls to the motion optimizer are expensive!
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Introduction II

Combine state-of-the-art PDDL Planning with nonlinear optimization (TAMP as
Logic Geometric Program)
Identify and encode geometric infeasibility – Prefix Conflicts

Figure: Manipulation task solved by our algorithm. Solution requires combined logic and
geometric reasoning about tool-use, pushing and pick & place actions with two robot
manipulators.
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Introduction III

Contributions
Prefixes as geometric conflicts
Prefix forbidding reformulation
Metareasoning for conflict extraction
Diversity criteria for plan selection

Strengths of our method:
Applicable in any problem in task and motion planning
Easy implementation with off-the-shelf components:

NLP Solver
PDDL-Solver
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Related Work - TAMP

Task and Motion Planning (TAMP)
Sample-based approaches

Planner-independent interface layer between task and motion planners [Srivastava
et al. (2014)].
Constraint-based task planning formulation and a Satisfiability Modulo theory
(SMT) solver. [Dantam et al. (2016)].
Constrained samplers (in configuration space) and PDDL planning [Garrett et al.
(2020)].
Precompilation of geometric solutions [Ferrer-Mestres et al. (2017)].

Optimization-based approaches
Logic Geometric Program formulation [Toussaint et al. (2018)].
Multi Bound Tree Search solver [Toussaint and Lopes (2017)].
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Background - Classical Planning

Classical Planning task Π = 〈V ,A, s0, g , cost 〉 (sas+ [Bäckström and Nebel (1995)]).
V is a set of state variables v ∈ V, each has a finite domain D(v). A (partial) state
s is a (partial) assignment to the state variables.
A is a finite set of actions. a ∈ A is a pair of of partial states 〈pre(a), eff (a)〉
called preconditions and effects. s[a] is the state that results from applying s to a.
s0 is the initial state.
g is the goal (partial state).

π = 〈a1 . . . aK 〉 = a1:K is a valid plan if each action is applicable in the previous state
(sk = sk−1[ak ], starting from s0), and the final state satisfies the goal g ⊆ sK .
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Background - Logic Geometric Program

Logic Geometric Program: Joint optimization of logical decision variables 〈a1 . . . aK 〉,
〈s1 . . . sK 〉 and continuous decision variables x(t) : t ∈ R→ Rn (a trajectory in
configuration space).

LGP min
x ,s1:K ,a1:K ,K

K−1∑
k=0

∫ (k+1)T

kT
c(x(t), s0:k) dt (1a)

x(0) = x0,
∀k ∈ 0, . . . ,K :
hk(x(t), s0:k) ≤ 0, t ∈ [kT , (k + 1)T ],
sk = sk−1[ak ],

g ⊆ sK .

Logic: SAS+ Planning task Π = 〈V,A, s0, g , cost〉.
Nonlinear constraints h(·) and cost c(·) on the trajectory.
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Background - Logic Geometric Program II

A sequence of logical states and actions imply a nonlinear program (NLP) on the
trajectory.

NLP(a1:K ) : min
x

K−1∑
k=0

∫ (k+1)T

kT
c(x(t), s0:k) dt (2a)

s.t. x(0) = x0, (2b)
∀k ∈ 0, . . . ,K : (2c)

hk(x(t), s0:k) ≤ 0, t ∈ [kT , (k + 1)T ].

where s1:K is uniquely defined by a1:K and s0.
A sequence of actions a1:K is geometrically infeasible when NLP(a1:K ) is infeasible, i.e

@ x(t), t ∈ [0,TK ] Eq. (2b) (2c). (3)
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Background - Multibound Tree Search (MBTS)

Tree search starting from s0.
Explore 〈s0, a1, s1, a2, s3 . . .〉 to find nodes
sn ⊇ g with feasible NLP(〈a1 . . . aK 〉).
[Toussaint and Lopes (2017)]

s0

a1

a1, a2 a1, a3

a2

a2, a3

a3

NLP(〈a2, a3〉)

Bounds before solving NLP(a1:K ): consider only mode-switches x(tk) k = 1, ...,K .
Pose bound: compute x(tk) independently.
Sequence bound: compute {x(tk)} jointly.

Combined Logic-Geometric search:
Logic expansion using breadth first search.
Three queues to solve nonlinear programs (Pose, Sequence, Full).
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Iterative Logic Planning for LGP

Logic Planner
+ diversity plan Motion Planner

+ conflict extraction Solution

planning
task

Reformulation Infeasible prefix

Overview: we combine a symbolic planner that generates plans of actions, with a motion
planner to compute a trajectory. If a plan is not geometrically feasible, we extract a conflict,
namely a prefix of infeasible actions, and reformulate the planning task.
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Illustrative example of the execution of our algorithm (with N=1 and eager conflict
extraction). The scene contains two movable objects O1, O2, a table T, a box B and
two robots R, L that can pick and place the objects. The goal is (on B O1), (on O1 O2).

(on T O1) (on T O2) (Free R) (Free L)

pick O1 L T

place O1 L B

pick O2 L T

place O2 L O1

1
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Illustrative example of the execution of our algorithm (with N=1 and eager conflict
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pick O2 L T

place O2 L O1
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2
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Illustrative example of the execution of our algorithm (with N=1 and eager conflict
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pick O1 L T
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pick O2 L T

place O2 L O1

pick O1 L T

place O1 L B

2

pick O1 R T

place O1 R B

pick O2 L T

place O2 L O1

3

pick O2 R T

place O2 R O1

4
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Prefixes as Conflicts

Theorem: Let Π be an LGP task (1), and let π be a sequence of logical actions, such
that π is not geometrically feasible from the initial state. Then any sequence of actions
π′ which contains π as a prefix is not geometrically feasible from the initial state.

Example:
If 〈pick(B)〉 is infeasible at the geometric level → 〈pick(B), place(B)〉 is infeasible.

However, it is not safe to infer that 〈pick(B), place(B)〉 can never be applied. The
sequence of actions 〈pick(A), place(A), pick(B), place(B)〉 might be geometrically
feasible.
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Forbidding Plans by prefixes

Prefix forbidding reformulation, based on [Katz et al. (2018)].
Forbid 〈a1 . . . aK 〉 as a prefix, instead of as a plan. Applying the starting sequence
〈a1 . . . aK 〉 in the reformulated task leads to a dead end.
Simultaneously forbid multiple prefixes (compact). Build a prefix tree T = (N,E )
which contains all (non-dominated) prefixes. Each node corresponds to a prefix, and
there is an edge from node π to node π′ if we can add one action to π to yield π′.
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Forbidding Plans by prefixes II

Definition: Let Π = 〈V ,A, s0, g , cost 〉 be a planning task, T = (N,E ) be a prefix tree
with L ⊆ N being the leaf nodes, and A(T ) be the set of operators that appear on the
prefixes in T . The task Π−T = 〈V ′,A′, s ′0, g ′, cost ′〉 is:
V ′ = V ∪ {v} ∪ {v s | s ∈ N}, with v s binary and v a ternary variable,
A′ = Ae ∪ A1 ∪ A2 ∪ A3, where
Ae = {ae | a ∈ A \ A(T )}, A1 = {a1 | a ∈ A}, A2 = {a2 | a ∈ A(T )}, and
A3 = {a3(s,t) | (s, t) ∈ E} with

ae = 〈pre(a) ∪ {〈v , 1〉}, eff (a) ∪ {〈v , 0〉}〉
a1 = 〈pre(a) ∪ {〈v , 0〉}, eff (a)〉
a2 = 〈pre(a) ∪ {〈v , 1〉} ∪ {〈v s , 0〉 | (s, t) ∈ E a}, eff (a) ∪ {〈v , 0〉}〉

a3(s,t) = 〈pre(a(s,t)) ∪ {〈v , 1〉, 〈v s , 1〉}, eff (a(s,t)) ∪ {〈v s , 0〉, 〈v t , 1〉}〉 if t 6∈ L,
a3(s,t) = 〈pre(a(s,t)) ∪ {〈v , 1〉, 〈v s , 1〉}, {〈v , 2〉}〉 if t ∈ L,
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s ′0[v ] = s0[v ] for all v ∈ V, s ′0[v ] = 1, s ′0[v s0 ] = 1, and s ′0[v s ] = 0 for all
s ∈ N \ {s0}, and
g ′[v ]=g [v ] for all v ∈V s.t. g [v ] defined, and g ′[v ]=0.
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Feasibilty Checking

Let 〈a1 . . . aK 〉 be an infeasible plan. How to compute an infeasible prefix?
Lazy: Return 〈a1 . . . aK 〉
Eager: Find the mininal infeasible prefix

min k s.t Feas(〈a1 . . . ak〉) = 0 (i.e. 〈a1 . . . ak〉 is infeasible) (4)

Binary Search: Feas(〈a1 . . . ak〉) ≥ Feas(〈a1 . . . ak+1〉). Each check → solve NLP(a1:k)

Goal: Reduce the global number of calls to the nonlinear optimizer.
Trade-off: finding short prefixes requires solving more NLPs now, but less in the future.

Store all solved NLPs in a Cache
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Feasibility Checking – Example

The logic planner computes the plan 〈a1, a2, a3, a4〉
pick O1 L T place O1 L B pick O2 L T place O2 L O1

NLP(a1:4) is infeasible
pick O1 L T place O1 L B pick O2 L T place O2 L O1

We can return 〈a1, a2, a3, a4〉 as a conflict, or look for a smaller prefix that is infeasible.
For example, we can evaluate 〈a1, a2, a3〉
pick O1 L T place O1 L B pick O2 L T

NLP(a1:3) is also infeasible
pick O1 L T place O1 L B pick O2 L T

We now evaluate 〈a1, a2〉
pick O1 L T place O1 L B

NLP(a1:2) is feasible – We return 〈a1, a2, a3〉 as conflict.
pick O1 L T place O1 L B
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Metareasoning for Conflict Extraction

Middle-ground approach between lazy and eager.
When searching for the conflict in a1:K , we have a range [l , u] such that a1:u is not
geometrically feasible, while a1:l is. We can decide to return a1:u as conflict or
search a smaller conflict (between l , u).

Markov Decision Process (MDP)
States Sπ = {〈l , u〉 | l ≤ u ∈ 0 . . .K} – describe the current range of the search.
Terminal: converged search 〈u, u〉. Start: 〈0,K 〉
Actions at 〈l , u〉: A) stop searching (reach state 〈u, u〉), or B) check any node
l < m < u. We reach state 〈m, u〉 with probability pf (a1:m), and state 〈l ,m〉 with
probability 1− pf (a1:m).
r(〈u, u〉) = r(τ) rewards from adding the conflict τ = 〈a1 . . . au〉
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Metareasoning for Conflict Extraction

How to estimate reward?

r̂(τ) = |{π′|π′∈C ,τ is a prefix of π′}|
|C | , C is the set of prefixes in our cache.

How to estimate the transition probabilities?

Use prefix length n as feature. Ratio between feasible and infeasible prefixes of
given length. p(n) = # feasible Prefixes(n)

#evaluated Prefixes (n) .

Metareasoning based conflict extraction
Solve MDP with Dynamic Programming (backwards recursion).
At current 〈l , u〉 we choose the optimal action (i.e. search an intermediate node or stop)
in the MDP.
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Diverse Logical Planning for LGP

We can generate a set of plans in each iteration (instead of only one)
How to choose which plan to test next? → Prefix Novelty

High chance to extract a short conflict from that plan.
Explore the space of logical plans. Different logical plans → different nonlinear
programs.

Novelty of a plan π with respect to a set of plans LP:

np(π, LP) := −min{k | ∀π′ ∈ LP, π′|k 6= π|k}

Choose test plan π that maximizes np
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Complete Algorithm
Algorithm 1
Input: LGP task ΠLGP
Parameters: N
Π := logical projection of ΠLGP
T , LP,MC := ∅ . set of tried plans, found plans, found conflicts
while not solved do

Πf := FORBID(Π, LP ∪ MC)
LP := LP ∪ Diverse-Plan(Πf ,N)
π := SELECT(LP,T )
feasible, traj := MOTION-Feasible?(ΠLGP, π)
if feasible then return π, traj
else

T := T ∪ {π}
conflict := FIND-CONFLICT(π)
MC := MC ∪ {conflict}

end if
end while
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Complete Algorithm II

Theorem: If the underlying classical planner is sound and complete and the motion
planner always finds a feasible trajectory if such a trajectory exists, then Algorithm 1 is
sound and complete.
Proof: The proof follows from the fact that we only identify prefixes which can not
appear in the beginning of geometrically feasible plans, and from the correctness of the
forbidding compilation.
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Experimental Results

Benchmark Scenarios (Two 7-DOF robots)
Blocks (left) pick and place actions to construct a tower of blocks. Robots can

hold a stack of blocks, move the boxes and place several objects on top
of other objects.

Hanoi (middle) the robots can execute pick and place actions, to solve a tower
of Hanoi problem with objects of equal size and three tables.

Push (right) the robots can pick and place blocks and balls, and pick sticks
and use them as a tool to push balls.
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LGP Formulation

Logic Minimal set of logical symbols.
Symbolic structure of kinematic tree and interactions (grasp vs pushing).
Examples predicates: on(A B), busy(gripper).
Example actions: (pick A gripper T), (push A stick table).

Geometry Collision avoidance, reachability, physical interactions and placement
constraints.
Grasping model: a point near the endeffector’s grasp palm touches the
object surface. Grasp → stable relative transformation.

Pushing model: decision variables for the force and point-of-attack.
Motion and forces are constrained by physics equations [Toussaint et al.
(2020)].
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Baselines

Variations of Multibound Tree search (MBTS-{0,1,2}).
MBTS-0 no geometric checks in intermediate symbolic nodes

MBTS-{1,2} check, respectively, the pose and sequence bound before expanding a
node.

Metrics
Computational Time (time [s])
Number of Pose Bounds (pose)
Number of Sequence Bounds (seq)

+ Abblation Study

NOTE: The scope of the paper is to improve the logic search in the LGP framework, so that the
formulation can be applied to settings that require longer action sequences and challenging symbolic
reasoning. Therefore, we do not compare to other methods in task and motion planning, e.g. [Garrett
et al. (2020)], that use different underlying problem formulations and methods.
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MBTS-0 N=1 eager N=4 eager N=4 meta

time pose seq time pose seq time pose seq time pose seq

blocks-0 19.41.0 12.00.0 3.00.0 43.71.8 19.90.9 6.50.5 41.84.3 17.51.9 6.50.9 41.34.4 17.51.9 2.80.6
blocks-1 - - - 44.81.3 18.00.0 5.00.0 44.05.6 17.12.3 4.80.9 46.56.4 17.12.3 1.70.3
blocks-2 - - - 82.610.5 17.00.0 4.00.0 60.48.6 12.61.1 2.40.5 70.911.8 12.61.1 1.40.2
blocks-3 - - - 1115.8 17.01.0 3.40.4 10419.7 21.72.8 5.41.1 80.212.0 20.83.1 2.10.4
blocks-4 - - - 20033.1 27.18.2 6.12.8 16017.0 19.33.1 3.31.1 13922.6 17.82.7 1.30.2
hanoi-0 10.40.4 13.00.0 4.00.0 7.00.2 7.00.0 3.00.0 10.01.9 8.00.9 3.70.8 9.11.8 8.61.1 2.90.5
hanoi-1 34.70.7 34.00.0 6.00.0 27.00.6 17.00.0 8.00.0 18.73.1 13.51.0 5.10.6 13.82.2 14.01.0 3.40.4
push-1 41.90.8 55.80.2 1.00.0 17.10.4 14.00.0 4.00.0 24.41.4 17.31.1 5.30.5 24.91.7 18.71.2 3.80.4
push-2 50.01.0 64.00.0 1.00.0 49.50.9 37.00.0 13.20.1 37.11.1 23.20.9 7.20.4 34.31.6 24.30.8 3.20.2
push-3 27.70.9 38.00.0 1.00.0 14.40.2 11.00.0 3.00.0 26.13.2 17.92.0 5.80.9 21.11.8 17.31.8 2.90.3
push-4 75.91.5 1040.0 2.00.0 71.37.8 41.22.8 15.21.5 32.64.1 20.32.2 5.91.0 30.62.7 21.32.4 3.10.4
push-5 1111.6 1440.1 1.00.0 20.40.3 17.00.0 5.00.0 30.82.5 23.72.2 7.40.9 29.42.4 24.42.3 3.20.4
push-6 1171.5 1420.0 1.00.0 64.51.2 50.00.0 17.10.1 45.41.0 29.20.7 9.20.4 45.11.2 31.81.2 4.60.3
push-7 - - - 68.64.6 51.33.5 19.01.6 79.15.4 52.64.0 18.01.6 70.42.6 53.02.7 7.40.5
push-8 78.31.2 92.00.0 1.00.0 17.00.4 13.00.0 3.00.0 32.43.6 26.03.0 7.81.1 32.83.7 28.23.6 4.10.6
push-9 24840.1 42367.2 2.50.5 63.31.3 45.00.0 16.00.0 46.26.2 32.53.7 10.41.4 49.811.9 39.79.5 5.31.7
push-10 12.70.5 16.00.0 1.00.0 12.80.5 9.00.0 3.00.0 13.81.6 10.41.3 3.30.6 13.21.4 10.51.3 1.60.2
push-11 - - - 61.19.3 25.52.3 10.71.4 26.02.0 13.40.5 3.80.4 30.55.4 16.72.5 2.60.6

Total 827 1138 24.5 976 437 145 833 376 115 783 394 57.4
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Results I

Comparison to baseline Hypothesis: “Our basic novel approach (N=1, eager
conflict extraction) will be faster and solve more problems than any of the MBTS
baselines”.

Problems solved Problems faster
N=1,eager 18 16
MBTS-0 16 2

* MBTS-0 fails in problems with long action sequences/high branching factor.

* Ours: state-of-the-art PDDL-Planner + encoding of geometric information.
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Results II

Analysis of diverse planning Hypothesis: “Diverse planning with novelty measure
will improve over incremental plan generation”.

time pose seq
N=1 976 437 145
N=4 833 376 115

* N = 4 reduces computational time and the number geometric checks.

* Prefixes and orderings in LGP are important. Our measure outperforms classical
plan similarity metrics like action set similarity.
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Results III

Analysis of conflict extraction Hypothesis: “Metareasoning is faster than eager
and lazy conflict extraction”.

time pose seq
N=4, Metareasoning 783 394 57

N=4, Eager 833 376 115

* For N=4, eager (finds minimal prefix using the sequence bound), meta
(metareasoning approach for conflict extraction).

* Metareasoning speedup (meta is better in 12 vs eager 6).

* The Sequence bound of a feasible NLP is very fast to compute.
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Conclusion

Systematic interface between a PDDL-Planner and a nonlinear solver to solve LGP.
Identify and encode geometric conflicts (infeasible prefixes).
Extension with novelty selection criteria and metareasoning.
Outperform previous solvers for LGP.

Future Work:
Combine geometric and logical heuristics (with information about feasible prefixes).
Detect and encode stronger conflicts (subsets of infeasible constraints instead of
prefixes).

Preprint: J. Ortiz-Haro, E. Karpas, M. Katz and M. Toussaint (2022). A Conflict-driven
Interface between Symbolic Planning and Nonlinear Constraint Solving. Under review,
submitted to IEEE Robotics and Automation Letters (RA-L).
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Conflict-Directed Diverse Planning for Logic-Geometric Programming

Thanks for you attention!

Conflict-Directed Diverse Planning for Logic-Geometric Programming 42/44



References I

Bäckström, C. and Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11(4):625–655.

Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and Kavraki, L. E. (2016). Incremental task
and motion planning: A constraint-based approach. In Robotics: Science and systems,
volume 12, page 00052. Ann Arbor, MI, USA.

Ferrer-Mestres, J., Francès, G., and Geffner, H. (2017). Combined task and motion planning as
classical AI planning. CoRR, abs/1706.06927.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. (2020). Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings of
the Thirtieth International Conference on Automated Planning and Scheduling, Nancy,
France, October 26-30, 2020, pages 440–448. AAAI Press.

Katz, M., Sohrabi, S., Udrea, O., and Winterer, D. (2018). A novel iterative approach to top-k
planning. In Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, pages
132–140. AAAI Press.

Conflict-Directed Diverse Planning for Logic-Geometric Programming 43/44



References II

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. J., and Abbeel, P. (2014). Combined
task and motion planning through an extensible planner-independent interface layer. In 2014
IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China,
May 31 - June 7, 2014, pages 639–646. IEEE.

Toussaint, M., Allen, K. R., Smith, K. A., and Tenenbaum, J. B. (2018). Differentiable physics
and stable modes for tool-use and manipulation planning. In Robotics: Science and Systems
XIV, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June 26-30, 2018.

Toussaint, M., Ha, J., and Driess, D. (2020). Describing physics for physical reasoning:
Force-based sequential manipulation planning. IEEE Robotics Autom. Lett., 5(4):6209–6216.

Toussaint, M. and Lopes, M. (2017). Multi-bound tree search for logic-geometric programming
in cooperative manipulation domains. In 2017 IEEE International Conference on Robotics
and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3, 2017, pages
4044–4051. IEEE.

Conflict-Directed Diverse Planning for Logic-Geometric Programming 44/44


	References

