Learning Feasibility of Factored Nonlinear Programs in Robotic
Manipulation Planning

Joaquim Ortiz-Haro', Jung-Su Ha'!, Danny Driess', Erez Karpas?, Marc Toussaint!

Abstract— A factored Nonlinear Program (Factored-NLP)
explicitly models the dependencies between a set of continuous
variables and nonlinear constraints, providing an expressive
formulation for relevant robotics problems such as manipula-
tion planning or simultaneous localization and mapping. When
the problem is over-constrained or infeasible, a fundamental
issue is to detect a minimal subset of variables and constraints
that are infeasible. Previous approaches require solving several
nonlinear programs, incrementally adding and removing con-
straints, and are thus computationally expensive. In this paper,
we propose a graph neural architecture that predicts which
variables and constraints are jointly infeasible. The model
is trained with a dataset of labeled subgraphs of Factored-
NLPs, and importantly, can make useful predictions on larger
factored nonlinear programs than the ones seen during training.
We evaluate our approach in robotic manipulation planning,
where our model is able to generalize to longer manipulation
sequences involving more objects and robots, and different
geometric environments. The experiments show that the learned
model accelerates general algorithms for conflict extraction (by
a factor of 50) and heuristic algorithms that exploit expert
knowledge (by a factor of 4).

I. INTRODUCTION

Computing values for a set of variables that fulfil all the
constraints is a key problem in several applications, such as
robotics, planning, and scheduling. In discrete domains, these
problems are generally known as Constrained Satisfaction
Problems (CSP), which also include classical combinatorial
optimization like k-coloring, maximum cut or Boolean sat-
isfaction (SAT). In continuous domains, the dependencies
between a set of continuous variables and nonlinear con-
straints can be modelled with a factored nonlinear program
(without cost term or with a small regularization) which have
applications in robotic motion planning [1] or simultaneous
localization and mapping [2].

When a problem is over-constrained or infeasible, a funda-
mental challenge is to extract a minimal conflict: a minimal
subset of variables and constraints that are jointly infeasible.
These conflicts usually provide an explanation of the failure
that can be incorporated back into iterative solvers, for
example in the conflict-driven clause learning algorithm for
Boolean satisfiability problems (SAT) [3], [4], or conflict
based solvers for Task and Motion Planning in robotics
(TAMP) [5], [6], [7], [8], [9].

In a continuous domain, extracting conflicts is expensive
as it requires solving several nonlinear programs adding and

1 TU Berlin, Germany. 2 Technion, Israel.

This research has been supported by the German-Israeli Foundation for
Scientific Research (GIF) grant I-1491-407.6/2019. Joaquim Ortiz-Haro and
Danny Driess thank the International Max-Planck Research School for
Intelligent Systems (IMPRS-IS) for the support.

OO0

O -
.>©/.>o
oo

(b) Neural message passing

-

(a) Input Factored-NLP

i

(c) Output variable scores (d) Infeasible subgraphs

Fig. 1: Overview of our approach to detect minimal infeasible
subgraphs in a Factored-NLP. (a) The input of the model
is a Factored-NLP. Circles represent variables and squares
are constraints. (b) We perform several iterations of neural
message passing using the structure of the NLP. (c) The
network outputs the probability that a variable belongs to a
minimal infeasible subgraph. (d) We extract several minimal
infeasible subgraphs with a connected component analysis.

removing constraints.

We propose a neural model to predict minimal infeasible
subsets of variables and constraints from a factored nonlinear
program. The input to our model is directly the factored
nonlinear program, including semantic information on vari-
ables and constraints (e.g. a class label) and a continuous
feature for each variable (which, for instance can be used
to encode the geometry of a scene in robotics). The graph
structure of the factored nonlinear program is exploited for
performing message passing in the neural network. Finding
the minimal infeasible subgraph (i.e. a subset of variables
and constraints of the Factored-NLP) is cast as a variable
classification problem, and the predicted infeasible subsets
are extracted with a connected components analysis. An
overview of our approach is shown in Fig. 1. The prediction
of the graph neural network can be naturally integrated
into an algorithm to detect minimal infeasible subgraphs,
providing a significant speedup with respect to non-learning
methods, both using general conflict extraction algorithms or
expert algorithms with domain knowledge.

Our approach follows a promising trend in robotics to
combine optimization and learning [10], [11], [12], [13],

[14]. In this paradigm, a dataset of solutions to similar
problems is used to accelerate optimization methods, making
expensive computations tractable and enabling real-time so-
lutions to combinatorial and large scale optimization. There-
fore, we assume that a dataset of labeled factored nonlinear
programs (generated offline with a non-learning algorithm)
is available. Each example consists of a factored nonlinear
program and a set of minimal infeasible subgraphs.

As an application, we evaluate our method in robotic
sequential manipulation. Finding minimal conflicts is a fun-
damental step in conflict-based solvers, usually accounting
for most of the computational time.

From a robotics perspective, our novel contribution is to
use the structure of the nonlinear program formulation of
manipulation planning for message passing with a graph
neural network. To this end, we first formulate the motion
planning problem that arises from a high-level manipulation
sequence (symbolic actions such as pick or place) as a
factored nonlinear program [1]. Variables correspond to the
configuration of objects and robots at each step of the motion
and the nonlinear constraints model kinematics, collision
avoidance and grasping constraints. When combined with our
learned model, we get strong generalization capabilities to
predict the minimal infeasibility of manipulation sequences
of different lengths in different scenes, involving a different
number of objects and robots.

Our contributions are:

¢ A neural model to predict minimal conflicts in factored
nonlinear programs. We formulate the detection of
minimal infeasible subgraphs as a variable classification
problem and a connected components analysis.

o An algorithm that integrates the prediction of our neural
model and non-learning conflict extraction methods,
providing a significant acceleration.

e An empirical demonstration that the formulation of
manipulation planning as a factored nonlinear program,
together with our neural model, enables scalability and
generalization.

II. RELATED WORK
A. Minimal Infeasible Subsets of Constraints

In the discrete SAT and CSP literature, a minimal infeasi-
ble subset of constraints (also called Minimal Unsatisfiable
Subset of Constraints or Minimal Unsatisfialble Core) is
usually computed by solving a sequence of SAT and MAX-
SAT problems [15], [16], [17].

In a general continuous domain, a minimal infeasible
subset can be found by solving a linear number of prob-
lems [18]. This search can be accelerated with a divide
and conquer strategy, with logarithmic complexity [19]. In
convex and nonlinear optimization, we can find approximate
minimal subsets by solving one optimization program with
slack variables [20]. In contrast, our method uses learning
to directly predict minimal infeasible subsets of variables
and constraints, and can be combined with these previous
approaches to reduce the computational time.

B. Graph Neural Networks in Combinatorial Optimization

We use Graph Neural Networks (GNN) [21], [22], [23] for
learning in graph-structured data. Different message passing
and convolutions have been proposed, e.g. [24], [25]. Our
architecture, targeted towards inference in factored nonlinear
programs, is inspired by previous works that approximate
belief propagation in factor graphs [26], [27], [28].

Recently, GNN models have been applied to solve NP-
hard problems [29], Boolean Satisfaction [30], Max cut [31],
constraint satisfaction [32], and discrete planning [33], [34],
[35]. Compared to state-of-the-art solvers, learned models
achieve competitive solution times and scalabilty but are
outperformed in reliability and accuracy. To our knowledge,
this is the first work to use a GNN model to predict
the minimal infeasible subgraphs of a factored nonlinear
program in a continuous domain.

C. Graph Neural Networks in Manipulation Planning

In robotic manipulation planning, GNNs are a popular ar-
chitecture to represent the relations between movable objects,
because they provide a strong relational bias and a natural
generalization to including additional objects in the scene.

For example, they have been used as problem encoding
to learn policies for robotic assembly [36], [37] and ma-
nipulation planning [38], to learn object importance and
guide task and motion planning [39], and to learn dynamical
models and interactions between objects [40], [41]. Previous
works often use object centric representations: the vertices
of the graph represent the objects and the task is encoded
in the initial feature vector of each variable. Alternatively,
our model performs message passing using the structure of
the nonlinear program that corresponds to a manipulation
sequence, achieving generalization to different manipulation
sequences that fulfil different goals.

I1II. FORMULATION
A. Factored Nonlinear Program (Factored-NLP)

A Factored-NLP G is a bipartite graph G = (X U H, F)
that models the dependencies between a set of variables
X = {z; € R™} and a set of constraints H = {h, :
R™e — R™a}. Each constraint hg(z,) is a piecewise
differentiable function evaluated on a (typically small) subset
of variables z, C X (e.g. o = {z1,z4}). The edges
model the dependencies between variables and constraints
E = {(x;,h,) : constraint h, depends on variable x;}.
Throughout this document, we will use the indices i,j to
denote variables and a, b to denote constraints.

The underlying/associated nonlinear program is

find z; s.t. ho(x,) <0 Va; € X, h, € H . (D

The constraints h,(x,) < 0 also include equality constraints
(that can be written as hq(x,) < 0 and hy(xy) > 0).

A Factored-NLP G is feasible (F(G) = 1) iff (1) has
a solution, that is, there exists a value assignment x; for
each variable x; such that all constraints h,(Z,) are fulfilled.
Otherwise, it is infeasible (F(G) = 0). This assignment

can be computed with nonlinear optimization methods, such
as Augmented Lagrangian or Interior Points. A minimal
infeasible subgraph M C G is an infeasible subset of
variables and constraints whose any proper subset is feasible,

MCG, F(M)=0, F(M')=1VM' C M. (2

Given a graph G and a subset of variables X' C X,
a variable-induced subgraph G[X'] = (X' U H',E') with
H' = {h, € H : Neigh,(h,) € X'} is the subgraph
spanned by the variables X'. Intuitively, G[X'] contains the
variables X’ and all the constraints that can be evaluated
with these variables. In this work, we consider only minimal
subgraphs in the form of variable-induced subgraphs, i.e.
M = G[X'] C G, because it enables a more compact
representation (our approach can be adapted to predict gen-
eral subgraphs if required, changing the proposed variable
classification to constraint classification in Sec III-B).

A minimal infeasible subgraph is connected and a su-
pergraph M D M of an infeasible subgraph M is also
infeasible. A factored-NLP G can contain multiple infeasible
subgraphs, and a variable z; € X can belong to multiple
infeasible subgraphs.

B. Minimal Infeasible Subgraph as Variable Classification

Let ¢(G) = {M, C G} be the set of all minimal infeasible
subgraphs M, of a Factored-NLP G. Instead of learning ¢
directly, we propose to learn an over-approximation QNS that
can efficiently be framed as binary variable classification.

We first introduce the variable-feasibility function
¥(z;; G) that assigns a label y; € {0,1} to each variable
z; € X. y; = 0 if z; belongs to some infeasible subgraph
M., and y; = 1 otherwise. Given such a labelled graph,
we can recover the infeasible subgraphs approximately by
computing the connected components on the graph spanned
by the vertices with label 0, G’ = G[{z; : y; = 0}]. Thus,
we define the approximate mapping as,

$(G) = CC(G[{z; : yi = 0})), 3)

where CC performs a connected component analysis.

The approximate mapping ¢~$ is exact, ie. ¢ = ¢, if the
infeasible subgraphs {M,.} are disconnected. If two or more
of the infeasible subgraphs are connected, it returns their
union as a minimal infeasible sugraph, i.e. Uq; = Ug, which
over-approximates the size of the original minimal infeasible
subgraph. Our neural model will be trained to imitate the
labels of the variable-feasibility function 1.

We emphasize that learning the approximate function ¢~>
is not a real limitation. First, because the prediction will be
integrated into an algorithm that can further reduce the size
of the infeasible subgraph, if it is not already minimal, as
shown later in Sec. III-D. Second, because in practice finding
small infeasible subgraphs, as opposed to strictly minimal, is
already useful in the applications. Finally, note that ¢ can be
converted to a multiclass variable classification f(z;;G) =
y € {1,..., R}, where each variable can belong to multiple
classes — but this would require a complex, and potentially
intractable, permutation invariant formulation.

Ho—i

: Ha—si Ma—>j®

{ [Ha—i, pa—;] = Message, (zi, 2;),

z; = Update (AGG (pta—i, tib—i) , 2i),

Hb—i = Message, (z;)
zj = Update (fta—j, 2;)

Fig. 2: Message Passing in a Factored-NLP with two vari-
ables (i,7) and two constraints (a, b).

C. GNN with the Structure of a Factored-NLP

A fundamental idea of our method is to use the structure
of the Factored-NLP for message passing with Graph Neural
Networks (GNN) to learn the variable-feasibility ¢ (z;; G).

Each variable vertex z; € X has a feature vector z; € R"=
that is updated with the incoming messages of the neighbour
constraints. z; is initialized with z? to encode semantic
and continuous information of the variable x; (an example
on how to initialize the features in manipulation planning
is shown in Sec. IV-B). The update rule follows a two-
step process: first, each constraint computes and sends back
a message to each neighbour variable, which depends on
the current features of all the neighbour variables. Second,
each variable aggregates the information of the incoming
messages from the constraints and updates its feature vector.
A graphical representation is shown in Fig 2.

[@:U'a—n']iEN(a) = Messagea([@zi]ieN(a))’ S
z; = Update(AGG e n (i) Ha—sis Zi)-

La—; € R™ is the message from constraint a to variable
i. [®z]; denotes concatenation. N(a) = Neighg(h,) is
the ordered set of variables connected to the constraint h,.
N (i) = Neighs(z;) is the set of constraints connected to
variable z;. AGG is an aggregation function, e.g. max, sum,
mean or weighted average. We use max (element-wise) in our
implementation. Update and Message, are small MLPs
(Multilayer Perceptron) with learnable parameters. Likewise
the nonlinear constraints in the Factored-NLP are not per-
mutation invariant or symmetric, the features z; have to be
concatenated in a predefined order N(a) when evaluating
Message,.

The function Update is shared by all vertices (which
generalizes to Factored-NLPs with additional variables). The
function Message, is shared between different constraints
of the Factored-NLP that represent the same mathematical
function, i.e. Message, = Messagey, iff h,(z) = hy(x)
(which generalizes to Factored-NLPs with additional con-
straints). For example, in manipulation planning, all con-
straints that model collisions between objects will share the
same Message MLP.

The message passing update (4) is performed K times,
starting from the initial feature vectors 2. The feature
vectors after K iterations are used for variable classification
with a small MLP.

7; = CLASSIF(zX))

The parameters of all message and update networks are

Algorithm 1: Conflict Extraction with a GNN

Input: Factored-NLP G, GNN_Model, Solve, Reduce,
Result: M C G > Minimal infeasible subgraph

1 [§;] = GNN_Model(Factored-NLP)

2§ =.5, 6 = 1.2, found = false

3 while not found do

X candidate = {%i € X : §; < 0}

for g € Connected-components(G[X andidate]) do
feasible = Solve(g)
if not feasible then

LM + Reduce(g)

- I I N

found < true
break

1 Jieéxér

2 return M

—

trained to minimize the weighted binary cross entropy loss
between 3; and the variable-feasibility labels y;.

D. Algorithm to Detect Minimal Infeasible Subgraphs

To account for the approximation of our variable clas-
sification formulation, and small prediction errors, we can
integrate the learned classifier into a classical algorithm to
detect minimal infeasible subgraphs.

We assume the user provides the Solve and Reduce
routines, that respectively check if a Factored-NLP is feasible
and compute a minimal infeasible subset of an infeasible
graph. Reduce is an expensive routine, as it requires solving
several nonlinear programs adding and removing constraints.
The number of evaluated NLPs (and therefore the computa-
tion time) depends on the size of the input graph: linear on
the total number of variables using [18], or logarithmic [19].

Our algorithm is shown in Alg. 1. The GNN model is
evaluated on the input Factored-NLP and computes a feasi-
bility scores ¢; for each variable. Iteratively increasing the
classification threshold &, we select the candidate infeasible
variables X andidate USIng the current threshold §. We generate
candidate infeasible subgraphs with a connected components
analysis on the variable-induced subgraph G| X andidate], that
are evaluated with Solve. Once an infeasible subgraph is
found, we use Reduce to get a minimal infeasible subgraph.

A non-learning approach runs solve and reduce di-
rectly on the input Factored-NLP. Therefore, the acceleration
in our algorithm comes from evaluating these routines with
small (ideally minimal) candidates. Alg. 1 can be extended to
compute several minimal infeasible subgraphs by removing
the break instruction (line 10) and adding a special check
before solving a candidate subgraph (line 6), to avoid solving
for a supergraph of a found infeasible subgraph.

IV. FACTORED-NLP FOR MANIPULATION PLANNING

In this section, we present a factored nonlinear program
formulation for robotic manipulation planning that enables
our model to generalize to problems with longer manip-
ulation sequences, more objects and robots, and different
geometric environments.

Fig. 3: Factored-NLP in manipulation planning. Circles are
variables and squares are constraints (brown is collision
avoidance). Each column represents a keyframe of the
manipulation sequence. g, w are the configurations of two
robots; A, B are the absolute position of two objects, and
a,b are the relative pose of these objects with respect to
their parent in the kinematic tree.

A. Structure of the Factored-NLP

A Factored-NLP models the motion of robots and objects
that is implied by a sequence of high-level actions (such
as pick and place) as a nonlinear optimization/feasibility
problem. It contains variables that represent the configu-
ration of objects and robots at each time step. We focus
on the keyframe or mode-switch problem, that considers
only the configurations at the beginning and end of each
motion phase (e.g. when picking or placing an object), but
not the trajectory between them. This follows a common
problem decomposition used in Task and Motion Planning,
where path feasibility is evaluated afterwards with trajectory
optimization or sampling based motion planning [42], [1].

We include three types of variables: robot configurations,
object absolute positions and object relative positions with
respect to the parent frame. Nonlinear constraints model
grasping, kinematic, stability, and collision avoidance con-
straints. The structure of the NLP is similar to previous
factored formulations [7], [42], [43] but less compact (one
can formulate the nonlinear program without explicitly in-
troducing the absolute position of objects). However, this is
necessary to formulate Factored-NLPs of diverse manipula-
tion sequences using only few types of nonlinear constraints.
Because each type of constraint will correspond to a different
Message network, this formulation is crucial to enable
generalization of the GNN model.

In Fig. 3, we show the Factored-NLP that corresponds to
the manipulation sequence (pick object B with robot Q from
Initial B), (pick object B with robot W from robot Q), (place
object B on top of object A with Robot W).

B. Encoding of the Problem in the Initial Feature Vectors

The structure of the Factored-NLP implicitly encodes the
number of objects, robots and the high-level action sequence
(e.g. which robots pick which objects). The geometric de-
scription of the environment is encoded locally in the initial

M
o *

’ _“5
~— - o o

Fig. 4: Manipulation Scenarios. Obstacles are brown, blocks
are colorful and tables are white. Left: Train Data, Middle:
+ Blocks, Right: + Robots.

feature vector of each variable 2¥. Specifically, the initial
feature vector includes the information of unary constraints
(i.e. constraints evaluated only on a single variable, which
are then not added to the message passing architecture),
additional semantic class information (for example, whether
the variable represents an object or a robot, but without
including a notion of time index or entity), and geometric
information that is relevant for the constraints (for example,
the size of the objects). The dimension of z) is fixed, and
shorter feature vectors are padded with zeros.

For example, suppose that the Factored-NLP of Fig. 3
is evaluated in a scene where robot @) is at pose T =
[.32, 41, .56 .707, 0, 0, 0.707] , the start position of object
A is Ta = [0.35, 0.4, 0.5, 0.707, 0, 0, 0.707] and object A
is a box of size Sa = [2,.3,.2] . Then z° of variables
{90,91,¢2,93} is [1,0,0,0,0,0,Tg] where the first 6
components are a one-hot vector to indicate that it is a
robot. The z° of {ag,a1,as,as} is [0, 1, 0,0, 0,0, Ta] ,
where first components indicate that it is a relative pose with
respect to the reference position. The z° of { A, Ay, As, A3}
is [0,0,1,0,0,0,S4,0,0,0,0] to indicate that it is an
absolute position of an object of size S4.

V. EXPERIMENTAL RESULTS

A. Scenario

We evaluate our model in robotic sequential manipulation.
The high-level goal is to build towers and rearrange blocks
in different configurations, in scenarios that contain several
and varying number of blocks, robots and movable obstacles,
at different positions, see Fig. 4 and 5. The following setting
is used to generate the train dataset (4800 Factored-NLPs):

e Five movable objects: 3 blocks and 2 obstacles. Both
types of objects have collisions constraints but obstacles
are bigger and usually block grasps or placements. e Two
robots: 7-DOF Panda robot arms, that can pick and place
objects using a top grasp. e Different geometric scenes: the
position of the objects, robots and tables is randomized. e
Manipulation sequences of length 4 to 7.

To evaluate the generalization capabilities of the learned
model, we consider three additional datasets:

e +Robots: we add an additional robot. @ +Blocks:
we add two additional blocks. e +Actions: it contains
Factored-NLPs with longer manipulation sequences (length
of 8 to 10).

TABLE I: Classification Accuracy. Each pair indicates the
accuracy in predicting feasible and infeasible variables.

Train Data + blocks + Robots + Actions
GNN (94.7, 95.4) (96.1, 95.2) (95.7, 95.3) (94.6, 94.1)
MLP (93.0, 82.2) (93.4, 80.8) (93.0, 80.8) (91.0, 48.0)

MLP-SEQ (83.5, 88.1) (82.3, 88.8) (82.1, 88.8) (74.0, 75.3)

B. Data Generation

For training the GNN model we need a set of Factored-
NLPs with labelled variables to indicate whether they belong
to a minimal infeasible subset. First, we generate a set of
interesting high-level action sequences. Second, we evaluate
the manipulation sequences on random geometric scenes to
generate Factored-NLPs (including the initial feature vec-
tors). To compute the feasibility labels, we adapt the conflict
extraction algorithm of [7] to find up to 10 minimal infeasible
subgraphs.

C. Accuracy of the GNN Classifier

We compare our model (GNN) against a Multilayer Per-
ceptron (MLP) and a sequential model (MLP-SEQ), trained
with the same dataset.

The MLP computes §; = MLP(Z), A, C). 20 = [20,t;, e)]
is the feature vector of the variable we want to classify. It
concatenates the feature vector 2 used in the GNN, with
the time index t; of the variable, and a parametrization
that defines the entity e; (for instance, we represent an
object with its starting pose — one hot encodings could not
generalize to more objects). A is the encoding of the whole
action sequence, using small vectors to encode each token,
e.g. {“pick”, “block1”, “l_gripper”, “table”}. To account for
sequences of different length, we fix a maximum length
and add padding. C' is the global scene parametrization.
Since the dimensionality of C' is required to be constant,
it contains a parametrization that can encode the maximum
number of robots and objects. We also evaluate MLP-SEQ,
a sequential model MLP(Z?, SEQ(A),C) that encodes the
action sequence with a recurrent network (using Gated
Recurrent Units (GRU)).

We first evaluate the accuracy of the models to predict if
a variable belongs to a minimal infeasible subset, see Tab.
I. Our GNN model outperforms the alternative architectures,
both in the original Train Data and, specially, in the exten-
sion datasets. Our model keeps a constant ~95% success
rate across all datasets, while the performance of MLP and
MLP-SEQ drops to 48% and 75%. We also evaluate the
accuracy of our model to predict infeasible subgraphs, using
the proposed method that combines variable classification
(with a threshold of § = 0.5) and connected component
analysis. Our model outperforms MLP and MLP-SEQ, and
finds between 70% and 57% of the infeasible subgraphs, and
30%-50% of the predicted subgraphs are minimal, see Tab.
II. Between 34%-48% of the predicted graphs are feasible
(not shown in the table due to space limitation).

TABLE II: Prediction of infeasible subgraphs. Each pair
indicates the ratio “found / total” and “minimal / found”.

Train Data + Blocks + Robots + Actions
GNN (71.2, 54.1) (58.9, 33.3) (70.2, 55.3) (57.1, 41.9)
MLP (58.5, 54.6) (34.5, 53.2) (55.2, 37.6) (22.1, 35.5)
MLP-SEQ (65.7, 26.0) (28.6, 21.2) (61.3, 09.5) (36.3, 11.0)

TABLE III: Finding one minimal infeasible subgraph. Each
pair indicates the number of solved NLPs and the computa-
tional time in 100 Factored-NLPs, normalized by GNN+g1.

Train Data + blocks + Robots + Actions
GNN+e (1.57, 2.25) (1.44, 2.09) (1.66, 2.14) (1.50, 2.19)
GNN+gl (1, 1) (1, 1) (1, 1) (1, 1)
Oracle (0.83, 0.97) (0.62, 0.79) (0.83, 0.84) (0.71, 0.86)
Expert (3.66, 4.32) (3.13, 5.06) (4.33, 4.62) (3.33, 4.56)
General 2 (3.50, 64.1) (3.30, 163) (3.50, 66.5) (3.83, 128)

MLP, MLP-SEQ and GNN have the same information to
make the predictions. The Factored-NLP is a deterministic
mapping of the action sequence and the geometric scene.
Although a MLP could learn this mapping, our experiments
show that the representation does not emerge naturally — con-
firming that a structured model yields better generalization.

D. Finding Minimal Infeasible Subgraphs

We analyze the time required to find one minimal infeasi-
ble subgraph in an infeasible Factored-NLP with algorithms:

e Oracle, which executes a single call to Solve and
Reduce with a minimal infeasible subgraph as input.

o General {1,2}, which are generic algorithms for conflict
extraction: General 1 uses constraint filtering [18], and
General 2 uses QuickXplain [19].

o Expert is a heuristic algorithm for conflict extraction
in manipulation planning [8]. It exploits the temporal
structure, domain relaxations, and the convergence of
the optimizer to quickly discover the conflicts.

e GNN+{e,gl} combines the prediction of our GNN
model with either Expert or General 1. Expert and
General 1 are used as Reduce in Alg. 1.

Results are shown in Table III. GNN+gl is 60-120x
faster than General 2 (which is faster than General 1).
This highlights the benefits of our approach in domains
where we can compute a dataset using General offline, and
train the model to get an order-of-magnitude improvement
in new problems. GNN+g/ is 4-5x faster than the Expert
algorithm, and only 1.2x slower than an oracle. Moreover,
the acceleration provided by GNN is maintained in all the
datasets. This confirms the good accuracy and generalization
of the architecture seen in the classification results. As a side
note, Expert is faster than General 2 because it solves a lot of
small feasible NLPs first, until it finds one that is infeasible
(which is faster than solving infeasible NLPs).

A &
. e
of o @1,

| -

‘.., A‘

N}

Fig. 5: Manipulation sequence in + Actions. Robots build a
tower [red, blue] in the left table, moving first an obstacle.

E. Integration in a Conflict-based TAMP Planner

We demonstrate the benefits of neural accelerated conflict
extraction inside the GraphNLP Planner [8] for solving
TAMP problems. The planner iteratively generates high-
level plans, detects infeasible subgraphs, and encodes this
information back into the logical description of the problem.

For this evaluation, we define 10 high-level goals for each
setting corresponding to the +Actions, +Robots, and
+Blocks datasets, and report the total sum (including the 10
goals) of the number of solved NLPs and the computational
time in the conflict extraction component of TAMP solver.
GNN+e (which is more robust than GNN+g/ in this setting)
takes only (8.33s, 511 NLPs), (9.83s, 603 NLPs), and (63.9s,
1979 NLPs) for each scenario, and is between 2 and 3 times
faster than the expert algorithm, which requires (24.2s, 731
NLPs), (38.7s, 1116 NLPs), and (137.9s, 2554 NLPs).

VI. CONCLUSION

In this paper, we have presented a neural model to predict
the minimal infeasible subsets of variables and constraints in
a factored nonlinear program. The structure of the nonlinear
program is used for neural message passing, providing gen-
eralization to problems with more variables and constraints.

We have demonstrated our approach in manipulation plan-
ning. A single learned model, combined with a suitable NLP
representation of the motion sequence, can predict minimal
infeasibility of manipulation sequences of different lengths in
different scenes, increasing the number of objects and robots.
Our model achieves high accuracy, and the predictions can
be integrated to guide and accelerate classical and heuristic
algorithms for detecting minimal conflicts.

As future work, we would like to apply our neural for-
mulation to detect conflicts in discrete constraint satisfaction
problems, such as Boolean Satisfaction or k-coloring. From a
robotics perspective, we will further investigate the potential
of graph neural networks to combine logic and geometric
information for guiding task and motion planning.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Robotics: Science and Systems XIV RSS, 2018.

F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1-139,
2017.

R. J. Bayardo Jr and R. Schrag, “Using csp look-back techniques to
solve real-world sat instances,” in Aaai/iaai. Providence, RI, 1997,
pp. 203-208.

J. P. Marques-Silva and K. A. Sakallah, “Grasp: A search algorithm for
propositional satisfiability,” IEEE Transactions on Computers, vol. 48,
no. 5, pp. 506-521, 1999.

N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 10, pp.
11341151, 2018.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE international conference
on robotics and automation (ICRA). 1EEE, 2014, pp. 639-646.

J. Ortiz-Haro, E. Karpas, M. Toussaint, and M. Katz, “Conflict-
directed diverse planning for logic-geometric programming,”’
Proceedings of the International Conference on Automated Planning
and Scheduling, vol. 32, no. 1, pp. 279-287, Jun. 2022. [Online].
Available: https://ojs.aaai.org/index.php/ICAPS/article/view/19811

J. Ortiz-Haro, E. Karpas, M. Katz, and M. Toussaint, “Conflict-driven
interface between symbolic planning and nonlinear constraint solving,”
in IEEE Robotics and Automation Letters (RA-L), 2022.

C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems, vol. 4,
pp. 265-293, 2021.

D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuris-
tics: Learning feasibility of mixed-integer programs for manipulation
planning,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2020.

D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning:
Learning to predict action sequences for task and motion planning
from an initial scene image,” in Robotics: Science and Systems 2020
(RSS 2020). RSS Foundation, 2020.

N. Mansard, A. DelPrete, M. Geisert, S. Tonneau, and O. Stasse,
“Using a memory of motion to efficiently warm-start a nonlinear
predictive controller,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 2986-2993.

A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwager, and
M. Pavone, “Learning mixed-integer convex optimization strategies
for robot planning and control,” in 2020 59th IEEE Conference on
Decision and Control (CDC). 1EEE, 2020, pp. 1698-1705.

R. Deits, T. Koolen, and R. Tedrake, “Lvis: learning from value
function intervals for contact-aware robot controllers,” in 2019 In-
ternational Conference on Robotics and Automation (ICRA). 1EEE,
2019, pp. 7762-7768.

M. H. Liffiton and K. A. Sakallah, “Algorithms for computing minimal
unsatisfiable subsets of constraints,” Journal of Automated Reasoning,
vol. 40, no. 1, pp. 1-33, 2008.

J. Marques-Silva, 1. Lynce, and S. Malik, “Conflict-driven clause
learning sat solvers,” in Handbook of satisfiability. ios Press, 2021,
pp. 133-182.

F. Hemery, C. Lecoutre, L. Sais, F. Boussemart, et al., “Extracting
mucs from constraint networks,” in ECAI, 2006.

E. Amaldi, M. E. Pfetsch, and L. E. Trotter, “Some structural and
algorithmic properties of the maximum feasible subsystem problem,”
in Int. Conf. on Integer Progr. and Combinatorial Optimization, 1999.
U. Junker, “Preferred explanations and relaxations for over-constrained
problems,” in AAAI-2004, 2004.

Y. Shoukry, P. Nuzzo, A. L. Sangiovanni-Vincentelli, S. A. Seshia,
G. J. Pappas, and P. Tabuada, “Smc: Satisfiability modulo convex
programming,” Proceedings of the IEEE, 2018.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Y. Ma and J. Tang, Deep Learning on Graphs. Cambridge University
Press, 2021.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263-1272.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

Z. Zhang, F. Wu, and W. S. Lee, “Factor graph neural networks,”
Advances in Neural Information Processing Systems, vol. 33, pp.
8577-8587, 2020.

V. G. Satorras and M. Welling, “Neural enhanced belief propagation
on factor graphs,” CoRR, vol. abs/2003.01998, 2020. [Online].
Available: https://arxiv.org/abs/2003.01998

J. Kuck, S. Chakraborty, H. Tang, R. Luo, J. Song, A. Sabharwal, and
S. Ermon, “Belief propagation neural networks,” Advances in Neural
Information Processing Systems, vol. 33, pp. 667-678, 2020.

M. J. A. Schuetz, J. K. Brubaker, and H. G. Katzgraber,
“Combinatorial optimization with physics-inspired graph neural
networks,” CoRR, vol. abs/2107.01188, 2021. [Online]. Available:
https://arxiv.org/abs/2107.01188

D. Selsam, M. Lamm, B. Biinz, P. Liang, L. de Moura, and D. L.
Dill, “Learning a sat solver from single-bit supervision,” arXiv preprint
arXiv:1802.03685, 2018.

W. Yao, A. S. Bandeira, and S. Villar, “Experimental performance of
graph neural networks on random instances of max-cut,” in Wavelets
and Sparsity XVIII, vol. 11138. SPIE, 2019, pp. 242-251.

J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe, “Graph neural
networks for maximum constraint satisfaction,” Frontiers in artificial
intelligence, vol. 3, p. 580607, 2021.

W. Shen, F. Trevizan, and S. Thiébaux, “Learning domain-independent
planning heuristics with hypergraph networks,” in Proceedings of the
International Conference on Automated Planning and Scheduling,
vol. 30, 2020, pp. 574-584.

O. Rivlin, T. Hazan, and E. Karpas, “Generalized planning with deep
reinforcement learning,” arXiv preprint arXiv:2005.02305, 2020.

R. Nir, A. Shleyfman, and E. Karpas, “Learning-based synthesis
of social laws in STRIPS,” in Proceedings of the Fourteenth
International Symposium on Combinatorial Search, SOCS 2021,
Virtual Conference [Jinan, China], July 26-30, 2021, H. Ma and
I. Serina, Eds. AAAI Press, 2021, pp. 88-96. [Online]. Available:
https://ojs.aaai.org/index.php/SOCS/article/view/18555

N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble
with structured representations and search for robotic architectural
construction,” in Proceedings of the 5th Conference on Robot
Learning, ser. Proceedings of Machine Learning Research, vol.
164. PMLR, 08-11 Nov 2022, pp. 1401-1411. [Online]. Available:
https://proceedings.mlr.press/v164/funk22a.html

S. K. S. Ghasemipour, D. Freeman, B. David, S. S. Gu, S. Kataoka,
and I. Mordatch, “Blocks assemble! learning to assemble with large-
scale structured reinforcement learning,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.13733

R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical
multi-object manipulation using relational reinforcement learning,” in
2020 ieee international conference on robotics and automation (icra).
IEEE, 2020, pp. 4051-4058.

T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez,
and L. P. Kaelbling, “Planning with learned object importance in large
problem instances using graph neural networks,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 35, no. 13, 2021, pp.
11962-11971.

D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,”
2022. [Online]. Available: https://arxiv.org/abs/2202.11855

F. Paus, T. Huang, and T. Asfour, “Predicting pushing action effects on
spatial object relations by learning internal prediction models,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 10584-10590.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Sampling-based
methods for factored task and motion planning,” The International
Journal of Robotics Research, 2018.

F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,
“Efficiently combining task and motion planning using geometric
constraints,” The International Journal of Robotics Research, vol. 33,
no. 14, pp. 1726-1747, 2014.

