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1 Reading guide

This report summarizes 5 months of work as a research assistant in the Artificial In-
telligence and Machine Learning group at UPF (University Pompeu Fabra), under the
supervision of Gergely Neu.

The goal of the project was to analyze the new algorithms that use entropic regu-
larization to solve the optimal transport problem. This optimal transport formulation
framework is becoming popular in Machine Learning as a tool to compute distances be-
tween probability distributions.

This document is divided in five parts:

- Section 2: an introduction with a brief description of optimal transport.

- Section 3: a review of the state of the art results and publications in this field. We
also reproduce the more important proofs, to point out ideas and techniques that
have an influence on our work.

- Section 4: we propose a new framework to analyze the proximal version of regular-
ized optimal transport. Although this algorithm has a good practical performance,
it comes without any guarantee or theoretical analysis. In this report, we present
a new complexity analysis for the proximal formulation based on a follow the regu-
larized leader setting and new bounds on the number of Sinkhorn iterations.

- Section 5: a short overview of other ideas that we have explored during this project.
Again, the goal is to find new ideas and frameworks to do a tight analysis of the
proximal version of regularized optimal transport.

- Section 6: a conclusion with a short recap of the contributions, highlighting the
missing pieces and a discussion of future research directions.
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2 Introduction

Computing distances between probability distributions is a key problem in statistical
machine learning, with applications to supervised and unsupervised learning [6]. This
distance can be defined in several ways. For example, the total variation distance, the
Kullback Leibler divergence, the Jensen-Shannon divergence and the earth mover distance
(also called Wasserstein-1).

From these alternatives, the earth mover distance provides a more powerful geometric
description to compare probabilities and shows a better performance in machine learning
tasks. However, computing the distance is more computationally expensive.

The earth mover distance is the cost of moving mass from one shape to another opti-
mally. It is an instance of an optimal transport problem (with a particular choice of cost
matrix) and requires solving a linear program, which is expensive in the large settings of
machine learning. In fact, the cost of computing optimal transport distances scales at
least in O(n3log(n)) when comparing two histograms of dimension n [17]. As a compari-
son, the Kullback Leibler divergence between to histograms of dimension n is computed
in O(n).

In this report, we will focus on the efficient computation of the optimal transport
distance (which generalizes the earth mover distance).

We now formalize the optimal transport problem in statistics. We denote the simplex
as ∆n = {x ∈ Rn

+ :
∑
xi = 1}. The optimal transport for a given cost matrix C ∈ Rn×n

plan between two distributions r ∈ ∆n and c ∈ ∆n is a joint distribution P ∈ ∆n×n with
marginals r and c with minimum cost

∑
CijPij. Through all the document, we assume

that marginals r, c have the same dimension r, c ∈ ∆n for simplicity, but results generalize
for r ∈ ∆n and c ∈ ∆m. Let 1 ∈ Rn be a column vector with all entries equal to one.

The optimal transport problem Lc(r, c) is:

Lc(r, c)
def
= min

P∈U(r,c)
〈C,P 〉 = min

P∈U(r,c)

∑
i,j

CijPij (2.1)

U(r, c) = {P ∈ Rn×n
+ : P1 = r, P T1 = c} (2.2)

Its dual problem is a direct consequence of general strong duality for linear programs.

Lc(r, c) = max
(f,g)∈R(C)

〈f, r〉+ 〈g, c〉 (2.3)

R(C)
def
= {(f, g) ∈ Rn × Rn : fi + gj ≤ Cij, ∀(i, j) ∈ [n]× [n]} (2.4)

Optimal transport defines a distance between probability measures as soon as the cost
matrix fulfils some properties. In fact, the earth mover distance corresponds to Cij = dij
with dij a distance function. For example, with 1-d histograms Cij = |i− j|. We refer the
reader to [18] for an updated and extensive reference to optimal transport in the context
of statistics.
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3 Regularized optimal transport

A recent approach [9] to solve the optimal transport problem (2.1) is to regularize the
original problem with the convex entropic term R(P ) =

∑
Pij logPij = −H(P ), where

H(P ) is the entropy of the joint distribution. The regularized problem becomes a matrix
scaling problem, and can be efficiently solved with the Sinkhorn algorithm [22]. The
solution of the regularized problem Pη is an approximate solution of the solution original
linear problem P ∗.

P ∗ = arg min
P∈U(r,c)

〈C,P 〉 (3.1)

Pη = arg min
P∈U(r,c)

〈C,P 〉+ ηR(P ) (3.2)

The solution of the regularized program converges to the solution of the original un-
regularized problem as η tends to zero. The convergence rate is, at least, linear in the
regularization parameter.

〈C,Pη〉 − 〈C,P ∗〉 ≤ η(R(P ∗)−R(Pη)) ≤ ηG (3.3)

G = max
x,y∈∆n×n

R(x)−R(y) (3.4)

Moreover, under certain conditions of the regularization parameter and the cost struc-
ture, the convergence is exponential [24].

This approximate solution offers a good trade off between computation and accuracy.
Moreover, it also defines a better distance in some inference tasks.

The good performance of this approach, drew attention for new practical and theo-
retical work. On one hand, Wasserstein distance is now applied in supervised and unsu-
pervised learning tasks. From a theoretical perspective, the computational complexity of
solving optimal transport via Sinkhorn iteration has been analyzed providing theoretical
guarantees. Moreover, alternative methods based on convex optimization algorithms (e.g.
gradient and mirror descent) and variations of Sinkhorn algorithm have been proposed
and analyzed. Apart from the papers explicitly cited in this report, we point the reader
to [14], [4], [19], [7], [4], [3], [10], [16], [13] for an overview of recent ideas and approaches
to solve and analyze the optimal transport problem.

We now give a short summary of the most important results in the complexity analysis
of solving optimal transport via Sinkhorn iterations. The complete derivation of lemmas
and proofs is found in [5], [12].
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3.1 Approximate solution to optimal transport

In approximate optimal transport, our goal is to find a matrix P̂ ∈ U(r, c) such that

〈P̂ , C〉 ≤ min
P∈U(r,c)

〈P,C〉+ ε (3.5)

To find P̂ , we first solve the regularized program via the Sinkhorn algorithm

min
P∈U(r,c)

〈C,P 〉+ ηR(P ) (3.6)

The Sinkhorn algorithm is an iterative algorithm, see algorithm 4, where columns and
rows are iteratively rescaled until the desired level of constraint violation is reached.

The input for Sinkhorn algorithm is the matrix K with kij = e−Cij/η. Let Ps be the
output of the algorithm, which fulfills:

‖Ps1− r‖1 +
∥∥P T

s 1− c
∥∥

1
≤ ε′ (3.7)

Finally, P̂ is obtained by rounding Ps to U(r, c) with algorithm 2.

Algorithm 1 Sinkhorn’s algorithm

Input: K, ε′, u0, v0.
let B(u, v) = Diag(u) K Diag(v)
repeat
if k mod 2 = 0 then
uk+1 = uk + ln r − ln (B (uk, vk)1)

else
vk+1 = vk + ln c− ln

(
B (uk, vk)

T 1
)

end if
until ‖B (uk, vk)1− r‖1 + ‖B (uk, vk)

T 1− c‖1 ≤ ε′

Output: Ps = B(uk, vk)

Algorithm 2 Rounding

Input: F, U(r, c)
X = Diag(x) with xi = min(ri/ri(F ), 1)
F ′ = XF
Y = Diag(y) with yj = min(cj/cj(F

′), 1)
F ′′ = F ′Y
errr = r − r(F ′′)
errc = c− c(F ′′)
G = F ′′ + errr err

T
c / ‖errr‖1

Output: P̂ = G
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3.2 Lagrange dual problem and Sinkhorn algorithm

The dual problem of (3.6) plays a central role in the analysis of the complexity of Sinkhorn
algorithm.

The Lagrangian of the regularized problem (3.6) is:

L(P, α, β) = 〈α, r〉+ 〈β, l〉+ 〈C,P 〉+ ηR(P )− 〈α, P1〉 −
〈
β, P>1

〉
(3.8)

Setting the gradient w.r.t. Pij to zero we find the structure of the solution.

Cij + η (1 + log (Pij))− αi − βj = 0, ∀i, j ∈ [n] (3.9)

Pij = e
−Cij+αi+βj

η
−1, ∀i, j ∈ [n] (3.10)

To simplify notation, we perform the change of variables.

ui =
αi
η
− 1

2
, vj =

βj
η
− 1

2
(3.11)

And solving maxα,β∈Rn minP∈Rn×n L(P, α, β) is equivalent to:

min
u,v∈Rn

f(u, v) := 1>B(u, v)1− 〈u, r〉 − 〈v, l〉 (3.12)

Where B(u, v) := diag (eu) e−
C
η diag (ev). Strong duality holds because the original

problem is a convex optimization problem (with convex cost and affine constraints).
The function f(u, v) is used as a potential to analyze the behaviour and convergence
of Sinkhorn algorithm. In fact, the iterations are a block coordinate descent on this
potential.

3.3 Optimal transport via Sinkhorn iterations:
Computational complexity

The goal of this section is to give a quick overview on the techniques and arguments used
to bound the computational complexity, presented in [5], [12]. In particular, we bound
the computational complexity to get an ε-approx solution, see (3.5), in a problem with
size n (i.e P ∈ ∆n×n and r, c ∈ ∆n). The analysis also sets the values of the parameters
η and ε′ as a function of ε and n.

We start computing how many iterations of Sinkhorn algorithm we need to reach ε′

marginal violation. For this, we use the dual of the regularized problem as a potential
function.
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Theorem 3.1. [12] Algorithm 4 outputs a matrix B (uk, vk) satisfying ‖B (uk, vk)1− r‖1+

‖B (uk, vk)
T 1− c‖1 ≤ ε′ in the number of iterations k satisfying k ≤ 2 + 4R

ε′

This constant R plays a central role in the analysis and is defined as:

R = max
i

(u0
i − u∗i ) + min

i
(u0

i − u∗i ) (3.13)

R ≤ − ln(e−‖C‖∞/η min
ij
{ri, cj}) (3.14)

Sketch of the proof : the key is to find a lower bound for the improvement of potential in
two consecutive Sinkhorn iterations ψ(uk, vk)− ψ(uk+1, vk+1), where ψ = f , see (3.12).

ψ (uk, vk)− ψ (uk+1, vk+1) = KL (r‖Bk1)

≥ 1
2
‖Bk1− r‖2

1 ≥ max
{
ψ̃ (uk, vk)

2 /(2R2), (ε′)2 /2
}

(3.15)

Where ψ̃(uk, vk) = ψ(uk, vk) − ψ(u∗, v∗). The two estimates inside the max operator
are combined to conclude that:

k ≤ 2 + 4R/ε′ (3.16)

�

The output of the Sinkhorn algorithm Ps is then rounded to U(r, c) using algorithm
2 and we obtain the approximate solution P̂ for the original problem. We now analyze
the computational complexity and compute the values for the regularization parameter η
and marginal violation ε′.

We highlight three key ideas:

– Algorithm 2 rounds a matrix A ∈ U(a1, a2) to B ∈ U(b1, b2) such that:

‖A−B‖1 ≤ 2(‖a1 − b1‖1 + ‖a2 − b2‖1) (3.17)

– The Sinkhorn algorithm outputs P̂ ∈ U(r′, c′) such that ‖r − r′‖ + ‖c− c′‖ < ε′.
Note that, because of the structure of the matrix, this is the optimal solution for
the regularized optimal transport problem with the same cost matrix but modified
marginals U(r′, c′).

– −2 log n ≤ R(X) ≤ 0, as P ∈ ∆n×n

These ideas are combined to get the bound:

〈P̂ , C〉 ≤ min
P∈Ur,c

〈P,C〉+ η2 log n+ 4ε′‖C‖∞ (3.18)

We set η = ε/(4 log n) and ε′ = ε/(8 ‖C‖∞) to obtain an ε approximate solution.
Substituting the value of η and ε into (3.16), and considering that each iteration takes

O(n2) time, we find the computational complexity:

Õ

(
n2

ε2

)
(3.19)

Where Õ hides logarithmic factors. The main drawback of this approach is the depen-
dence on 1

ε2
. This is also observed in practice, where the number of Sinkhorn iterations

strongly increases with small regularization parameters. Moreover, numerical precision
errors have a negative impact on the performance and accuracy.

7



3.4 Proximal formulation

3.4.1 ε-scaling

A well known heuristic to solve matrix scaling with Sinkhorn when the regularization is
very small, i.e K = e−C/η, η → 0 is to solve a sequence of subproblems, starting with a
“big” η and decreasing ηt ≥ ηt+1 until the desired η (reusing the scaling factors from the
previous subproblem). This is known as ε-scaling.

In practice, each subproblem is an instance of a proximal regularized optimal transport.
Let rt = ηt/ηt+1. These are equivalent formulations (see Lemma 4.7):

Pt = arg min
P∈U(r,c)

〈C,P 〉+ ηtR(X) (3.20)

Pt = arg min
P∈U(r,c)

〈C,P 〉+ rtD(P, Pt−1) (3.21)

Pt = arg min
P∈U(r,c)

〈C − rt lnPt−1, P 〉+ rtR(P ) (3.22)

Where D(P, Pt−1) =
∑
Pij logPij/P

t
ij is the Kullback Divergence.

Note that (3.21) and (3.22) can also be solved with the Sinkhorn algorithm. Now, the
kernel matrix is Pt−1 · e−C/rt instead of just e−C/η.

Although, this approach has better practical performance than solving directly only
one problem with small η, there are not theoretical guarantees on the convergence, the con-
vergence rate or the computation complexity. Moreover, there is no theoretical guidance
on how to design an optimal sequence {ηt} or to choose a precision for the subproblems
solutions (in terms of marginal violation).

ε- scaling for optimal transport has been studied in [20], with good practical perfor-
mance but still without convergence guarantees. One of the ideas is that the dual variables
αt, βt of (3.20) converge to α∗, β∗, the optimal dual variables of the original unregularized
problem. In ε-scaling, this observation is used to “warmstart” the scaling factors from
the values of the previous subproblem.

The main challenge in the analysis of ε-scaling is that the subproblems are not solved
exactly, as the Sinkhorn algorithm is an iterative algorithm.

3.4.2 Inexact mirror descent

In [23], the authors analyze the proximal algorithm inside the framework of inexact mirror
descent for a linear function. The approximate solution of the subproblem is computed
in terms of a bound on first order optimality. We reproduce here the most relevant results:

The goal is to minimize c(P ) = 〈C,P 〉 by solving a sequence of subproblems to δ first
order optimality:

Pk+1 =
δ

arg min
P∈U(r,c)

{c(P ) + ηD(P, Pk)} (3.23)
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First order optimality means:

max
P∈U(r,c)

〈∇l(Pk+1), Pk+1 − P 〉 ≤ δ (3.24)

with l(P ) = c(P ) + ηD(P, Pk)

Lemma 3.2. let P = 1
N

∑
Pk, with N = 2ηD(P ∗, P1)/ε iterations and δ ≤ ε

2
precision.

Then: 〈
C,P − P ∗

〉
≤ ε (3.25)

Proof: Let Pk+1 be a solution with δ precision. This means that, ∀P :

〈C +∇D(Pk+1, Pk), P − Pk+1〉 ≥ −δ (3.26)

In particular,
〈C +∇D(Pk+1, Pk), P

∗ − Pk+1〉 ≥ −δ (3.27)

Based on a basic inequality in mirror descent, see for example [25]:

c(P ∗) + ηD(P ∗, Pk) ≥ c(Pk+1) + ηD(Pk+1, Pk) + ηD(P ∗, Pk+1)− δ (3.28)

With D(Pk+1, Pk) ≥ 0:

c(Pk+1)− c(P ∗) ≤ ηD(P ∗, Pk)− ηD(P ∗, Pk+1) + δ (3.29)

Telescoping the divergence terms and denoting P = 1
T

∑
Pt

c(P )− c(P ∗) ≤ η D(P ∗, P1)

N
+ δ (3.30)

We are interested in a ε approx solution.

η D(P ∗, P1)

N
+ δ ≤ ε (3.31)

We can use δ ≤ ε
2

and N ≥ 2ηD(P ∗,P1)
ε

. �

Now we have to tune η, taking into account that it will influence on both: the number
of mirror descent iterations and the number of Sinkhorn iterations that we need to solve
each subproblem. In [23], they use η = O(‖C‖∞) and also propose an adaptative scheme.

The next step is to relate first order optimality bound δ to the marginal violation ε′ of
Sinkhorn stopping criteria. Overall, the complexity bound of this method is: O(n4/ε2).
However, in practice it has a better performance than solving just one subproblem with
a small regularization parameter.
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4 Proximal optimal transport and Sinkhorn iterations
as follow the regularized leader

4.1 Motivation and algorithm

The ε-scaling heuristic consists on solving a sequence of proximal regularized optimal
transport problems. In each round, the regularization is decreased and the new subprob-
lem is solved (using last solution as an initial guess). Here, we would like to point out the
strong connection of the ε-scaling iterations with the follow the regularized leader (FTRL)
algorithm.

FTRL is an online learning optimization algorithm, where the relative weights of the
regularization term decreases through the rounds. In our particular setting, the linear
function ft(P ) = 〈C,P 〉 is constant.

Therefore, we propose to use the FTRL framework to do a theoretic analysis of a
proximal optimal transport algorithm via Sinkhorn iterations. In practice, this algorithm
is a formalization of the ε-scaling heuristic.

The main advantage of this approach is that suboptimality of the subproblems solu-
tion can be measured directly as a gap in the cost function. One of the drawbacks of a
previous proximal analysis based on mirror descent [23] (using first order optimality) is
the requirement to bound the minimal entries of Pij. However, the authors point out that
this bound is not needed in practice.

We propose two variants of the algorithm. In this section arg minδ denotes additive
suboptimality in the cost function. In algorithm 3 each subproblem is solved in the relaxed
feasible convex set Ũ(r, c, ε̃) using the Sinkhorn algorithm and the rounding to U(r, c) is
computed only once in the end.

Ũ(r, c, ε̃) = {P ∈ Rn×n
+ : ‖P1− r‖ ≤ ε̃,

∥∥P T1− c
∥∥ ≤ ε̃} (4.1)

In algorithm 4 each subproblem is solved in U(r, c), which requires the Sinkhorn algo-
rithm and a rounding step for each subproblem.

In the following section, we will analyze algorithm 4 for simplicity, although the ar-
guments and proofs could also be extended to algorithm 3. A key idea is that the error
introduced by this rounding step is linear on the marginal violation, so that it can be
easily controlled and bounded.
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Algorithm 3 Optimal Transport FTRL algorithm, Only One Rounding

Input: C, r, c, δ, ε̃
for t = 1, . . . , T do
Pt = arg minδ 〈C,P 〉+ η

t
H(P ), s.t Pt ∈ Ũ(r, c, ε̃)

end for
P = 1

T

∑
Pt

P̂ = Round(P ) , see algorithm 2
Output: P̂

Algorithm 4 Optimal Transport FTRL algorithm, Rounding each step
Input: C, r, c
for t = 1, . . . , T do
Pt = arg minδ 〈C,P 〉+ η

t
H(P ) s.t Pt ∈ U(r, c)

end for
P = 1

T

∑
Pt

P̂ = P
Output: P̂

4.2 Analysis overview

Our goal is to find which is the computational complexity to achieve a ε-approximate
solution, i.e. finding Pε ∈ U(r, c) such that:

〈C,Pε〉 − 〈C,P ∗〉 ≤ ε (4.2)

P ∗ = arg min
P∈U(r,c)

〈C,P 〉 (4.3)

We set the approximate solution Pε to be the average of the matrices computed by
the proximal algorithm.

Pε = P T =
1

T

∑
t

Pt (4.4)

Our new analysis has two important components:

– Bound on
〈
P T − P ∗, C

〉
as function of the number of rounds T . We use an inexact

follow the regularized leader framework.

– Relation between the inaccuracy solution of each subproblem and the Sinkhorn stop-
ping criteria based on L1-norm of the marginal violation ‖P1− r‖1 +

∥∥P T1− c
∥∥

1

– Bound on the number of Sinkhorn iterations Kt necessary for solving each proxi-
mal subproblem (each ε-scaling iteration). The number of Sinkhorn iterations will
depend on the desired accuracy of the inexact solutions of the subproblems.

Each Sinkhorn iteration is computed in O(n2) computational time, with n the size
of the marginal vectors, i.e. r, c ∈ Rn. Therefore, the computational time of the whole
algorithm is:

n2
∑

Kt ≤ n2 × T ×K (4.5)

where K is an upper bound on the number of Sinkhorn iterations: Kt ≤ K ∀t.
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4.3 Bound on the regret with FTRL

In each iteration t ∈ [1, . . . , T ] of algorithm 4 , we are solving the subproblem (4.6). As
pointed before, this is an instance of FTRL with a constant linear function ft(P ) = 〈C,P 〉

min
P∈U(r,c)

t 〈C,P 〉+ ηR(P ) (4.6)

In fact, each iteration will be solved approximately, so that Pt+1 fulfils (4.7), with
Sinkhorn iterations and a rounding step. We now analyze the relation of the error of the
subproblems δt with the convergence rate and regret bound.

〈C,Pt+1〉+
η

t
R(Pt+1) ≤ min

P∈U(r,c)
〈C,P 〉+

η

t
R(P ) + δt (4.7)

One of the advantages of the follow the regularized leader approach is that the quality
of the approximate solution is controlled with the additive error(i.e: f ≤ f ∗ + δ). The
additive error is a natural measure of optimality in the approximated regularized optimal
transport literature, and is directly related to the number of Sinkhorn iterations.

Here we present two different ways of analyzing the approximate follow the regularized
leader for optimal transport. As we get two different upper bounds, we bound the regret
as the minimum of the two different regrets. We define the regret as:

RegretT =
T∑
t

〈C,Pt − P ∗〉 = T
〈
C,P T − P ∗

〉
(4.8)

Finally, note that the average regret Regret /T is an upper bound to the convergence
bound of

〈
C,PT − P ∗

〉
. This is due to convexity of the function ft(P ) = 〈C,P 〉, which in

this case is linear.

f
(
P T

)
− f (P ?) ≤ 1

T

T∑
t=1

[f (Pt)− f (P ?)] =
Regret

T
(4.9)

4.3.1 Inexact FTRL: first bound

Lemma 4.1. The regret of algorithm 4 is

RegretT ≤ ηG(1 + log T ) + Tδ + ‖C‖∞ (4.10)

Where η is the user-chosen regularized constant, G = maxR(a) − R(b) s.t a, b ∈ ∆n×n

and δ the approximation error of the subporblems defined as in (4.7).

Proof: We start reviewing the standard FTRL regret bound, see [21]. (also [15], [8]).

T∑
t=1

(ft (Pt)− ft(u)) ≤ R(u)−R (P ∗1 ) +
T∑
t=1

(
ft (Pt)− ft

(
P ∗t+1

))
, ∀u ∈ S = U(r, c)

(4.11)
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where S is our convex set and P ∗t are the optimal solutions of the subproblems.

P ∗1 = arg minR(P ) (4.12)

P ∗t = argmin
P∈S

t−1∑
i=1

fi(P ) +R(P ) ∀t = 2, 3, . . . (4.13)

In our case: Pt is a δt approx solution of the subproblem and the linear function is
constant the linear function is ft = 〈C,P 〉 ∀t.

〈C,Pt〉+
1

t− 1
R(Pt) ≤ 〈C,P ∗t 〉+

1

t− 1
R(P ∗t ) + δt (4.14)

We rearrange sum of differences:

T∑
t=1

〈C,Pt〉 −
〈
C,P ∗t+1

〉
≤ 〈C,P1〉 − 〈C,PT+1〉+

T∑
t=2

〈C,Pt〉 − 〈C,P ∗t 〉 (4.15)

Using the loose boundR(P ∗t )−R(Pt) ≤ G ∀t and 〈C,P1 − PT+1〉 ≤ ‖C‖∞ and δt ≤ δ ∀t

T∑
t=1

(ft (Pt)− ft(u)) ≤ ηG+ ‖C‖∞ +
T∑
t=2

ηG

t− 1
+ δt ∀u ∈ S (4.16)

RegretT ≤ ηG(1 + log T ) + Tδ + ‖C‖∞ (4.17)

�
Note that the logarithm makes it difficult to explicitly choose T as function of the

error of the original problem.〈
C,Pt − P ∗

〉
≤ 1

T
RegretT ≤ ε (4.18)

A naive solution is to use the trivial bound log T ≤
√
T . With an approximate a

priori knowledge of the value of T , more tight polynomial bounds can be proposed. This
enables to explicitly find T as a function of ε.

For high values of T (in the limit), where log T is upper bounded by a low degree
polynomial, we could choose T = O(1

ε
) and δ = O(ε).

4.3.2 Inexact FTRL: second bound

Now we present the second approach to deal with the approximate solutions inside FTRL.

Lemma 4.2. The regret of algorithm 4 is

Regret ≤ ηG+ ‖C‖∞ + δ̃
T (T + 1)

2
(4.19)

Where η is the learning rate, G is the diameter of the set U(r, c), and δ̃ ≥ δt is a bound
on the approximation error of the subproblems as defined in 4.7.
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Proof: we start with a classical result in FTRL analysis (see [21]):

R(u) +
T∑
t=1

ft(u) ≥ R(w1) +
T∑
t=1

ft
(
P ∗t+1

)
, u ∈ S = U(r, c) (4.20)

where S is a convex set and P ∗t has been defined in (4.13).

Now we extend this inequality (in the general setting of online learning with functions
f1, f2, . . .) to account for approximate solutions.

Lemma 4.3. Suppose we choose Pt such that.

t−1∑
i=1

fi(Pt) +R(Pt) ≤
t−1∑
i=1

fi(P
∗
t ) +R(P ∗t ) + λt (4.21)

then

R(u) +
T∑
t=1

ft(u) ≥ R(P1) +
T∑
t=1

ft (Pt+1)− λt ∀u ∈ S (4.22)

Proof. We proof the inequality by induction on t. The base cases t = 1, 2 follows from
the definition of P1, P2 and that R(P1) ≤ R(u) + λ1∀u. Now we assume the inequality
holds for t = T − 1. We add fT (PT+1) to both sides and rearrange the inequalities.

fT (PT+1) +R(u) +
T−1∑
t=1

ft(u) ≥ R(P1) +
T∑
t=1

(ft(Pt+1))−
T−1∑
t=1

λt (4.23)

This hold for all u, in particular for u = PT+1. Finally, we use the definition of Pt+1 to
show the inequality for t = T , which concludes the induction. �

We apply the lemma to get the regret ∀u:

RegretT =
T∑
t=1

(ft (Pt)− ft(u)) ≤ R(u)−R (P ∗1 ) +
T∑
t=1

ft (Pt)− ft (Pt+1) + λt (4.24)

Using that ft(P ) = 〈C,P 〉, the terms in the sum
∑
〈C,Pt〉 − 〈C,Pt+1〉 telescope.

Note that each subproblem (4.7) is solved with precision δt = λt/t, i.e. we control the
error in terms of δt, not directly λt. Using δ̃ ≥ δt, we bound λt ≤ t δ̃.

Regret = ηG+ ‖C‖∞ + δ̃
t(t+ 1)

2
(4.25)

�
Following this bound, we set η = Õ(1), T = Õ(1/ε), and δ̃ = Õ(ε2). The notation Õ(·)

hides logarithmic factors.
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4.3.3 Inexact FTRL: tighter bounds?

As a future work, we believe that tighter bounds on the regret are possible. In particular,
we would like to achieve a linear bound T = O(1

ε
) and a reasonable subproblem accuracy

δ = O(ε). This could be possible by using that ft(P ) = 〈C,P 〉 in a more intelligent way.
This requires to do a direct regret analysis on our specific setting and algorithm, instead
of relying on the standard follow the regularized leader approach.

4.4 Relating the approximation error to the stopping criteria of Sinkhorn

In this section we compute how many Sinkhorn iterations we need to achieve accuracy δt
in the subproblems

〈C,Pt+1〉+
η

t
R(Pt+1) ≤ min

P∈U(r,c)
〈C,P 〉+

η

t
R(P ) + δt (4.26)

First we relate the accuracy δt to the marginal violation ρ. This quantity defines the
stopping criteria of the algorithm and is checked in O(n2) after each iteration.

ρ = ‖P1− r‖1 +
∥∥P T1− c

∥∥
1

(4.27)

Theorem 4.4. ([23], Theorem 8)To achieve a δt solution of (4.26) using Sinkhorn iter-
ations (and a rounding step at the end), the marginal violation ρ should be below

ρ ≤ δt

4
(
‖C‖∞ + 2η

t
ln 4ηn2

δtt

) ≤ δt
4 ‖C‖∞

(4.28)

�
Finally, remember that δt is set as a function of the desired accuracy on the original

problem 〈C,Pε − P ∗〉 ≤ ε, based on the FTRL analysis of algorithm 4.

4.5 A general bound of the number of Sinkhorn iterations

In this part, we relate the desired marginal violation ρ with the number of Sinkhorn it-
erations. First we start reviewing some results from [12] and [23] for solving regularized
optimal transport with Sinkhorn (4.29) (without proximal formulation). In then next
section we will adapt the analysis to our particular setting of follow the regularized leader
and ε-scaling, see algorithm 4.

Let us consider the regularized optimal transport problem. Note that by setting
γ = η/t we recover the subproblems of the follow the regularized framework.

min
X∈U(r,c)

〈C,P 〉+ γ
∑
i,j

Pij lnPij (4.29)

The dual problem of (4.29) is equivalent to:

min
u,v∈Rn

〈1B(u, v)1〉 − 〈u, p〉 − 〈q, v〉 (4.30)

B(u, v) := diag (eu) e−C/γ diag (ev) (4.31)

where (u, v) are a linear transformation of the Lagrange multipliers of the marginal con-
straints.
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Lemma 4.5. (Lemma 3 of [23].) Sinkhorn iterations are a contraction eu
t−u∗ and ev

t−v∗

in Hilbert’s projective metric.

Rt :=

{
maxj

(
vtj − v∗j

)
−minj

(
vtj − v∗j

)
, t mod 2 = 0

maxi (u
t
i − u∗i )−mini (u

t
i − u∗i ) , t mod 2 = 1

(4.32)

where (u∗, v∗) is the optimal scaling variables. Then for any t ≥ 0 it holds Rt+1 ≤ Rt.

The proof of the following lemma is missing in the original paper. Here we show
the derivation of this bound to get a good insight and to adapt it later to our proximal
formulation.

Lemma 4.6. (Claim without proof from [23]), using u0 = log r, v0 = log c.

R0 ≤
maxCij −minCij

η
(4.33)

Proof: The following ideas are based on Lemma 1 of [12].∑
j

eu
∗
iCije

v∗j = ri (4.34)∑
j

eu
∗
i−u0i elog riCije

v∗ = ri (4.35)

With κ = minij e
−Cij
γ

eu
∗
i−u0iκ

∑
j

ev
∗
j ≤ 1 ∀i (4.36)

max
i
eu
∗
i−u0i ≤ 1

κ
∑

j e
v∗j

(4.37)

On the other hand, with τ = maxij e
−Cij
γ

eu
∗
i−u0i τ

∑
j

ev
∗
j ≥ 1 ∀i (4.38)

min
i
eu
∗
i−u0i ≥ 1

τ
∑

j e
v∗j

(4.39)

max
i
u∗i − u0

i ≤ log
∑
j

ev
∗
j − log κ (4.40)

−min
i
u∗i − u0

i ≤ − log
∑
j

ev
∗
j + log τ (4.41)

Finally, we add both inequalities to get the desired bound. Note that we compute the
difference as u0

i − u∗i using maxi u
∗
i − u0

i = −mini u
0
i − u∗i �

Recall (see Theorem 1 of [12]) that the number of Sinkhorn iterations k needed to
get an ε error in ‖·‖1 on the marginal violation ρ is of the order of:

k = O

(
R0

ε

)
(4.42)

Therefore, the quantity R0 plays a central role in the complexity analysis of the algo-
rithm.
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4.6 Bounding the number of Sinkhorn iterations
in the proximal setting

In this section we bound how many iterations we need to solve the subproblems of our
follow the regularized leader framework. Recall that we are solving a sequence of problems:

Pt = arg min
P∈U

〈C,P 〉+
η

t

∑
Pij logPij (4.43)

Lemma 4.7. The subproblem:

Pt = arg min
P∈U

〈C,P 〉+
η

t

∑
Pij logPij (4.44)

can be rewritten both as (same solution):

Pt = arg min
P∈U

〈C,P 〉+ ηD(P, Pt−1) (4.45)

Pt = arg min
P∈U

〈C − η logPt−1, P 〉+ η
∑

Pij logPij (4.46)

Proof : Note that the solution of (4.44) is

Pt = Diag(eut) eC/(η/t) Diag(evt) (4.47)

Which can be rewritten as (· means element-wise product):

Pt = Diag(eu
p
t ) Diag(eut−1)

(
eC/(η/(t−1)) · eC/η

)
Diag(ev

p
t ) Diag(evt−1) (4.48)

Noting that:
Pt−1 = Diag(eut−1) eC/(η/(t−1)) Diag(eut−1) (4.49)

We rewrite:
Pt = Diag(eu

p
t )
(
Pt−1 · eC/η

)
Diag(evt−1) (4.50)

We can commute matrix products, and use associativity with the element-wise prod-
uct because matrices are diagonal. . �

Note that Pt−1 does not need to be the exact solution of the previous subproblem, as
we only require that it has the given structure and it belongs to the feasible set.

In this report, we assume that Lemma 4.7 either still holds even with the rounding step,
or induces a “small” error that does not increase the overall computational complexity.

Assumption 4.8. Either:
- Lemma 4.7 still holds when considering the rounding step after Sinkhorn iterations of
algorithm 4.
or:
- Lemma 4.7 does not hold exactly, but solving the “approximate equivalent” formulation
induces a small suboptimallity additive error that does not increase the computational
complexity. �

We compute a first bound on how many iterations we need to solve (4.45) taking into
account this equivalence, lemma 4.7.
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Lemma 4.9. In the proximal version of optimal transport,

min
P∈U(p,q)

〈C,P 〉+ γD(P, Pt) (4.51)

where D(P, P t) is the Bregman divergence. A general bound for Rt
0 is:

Rt
0 ≤

maxCij −minCij
γ

− log minPt (4.52)

Proof : Problem (4.51) can be rewritten to recover the standard (non proximal) for-
mulation.

min
P∈U(p,q)

〈C − γ logPt, P 〉+ γ
∑
i,j

Pij lnPij (4.53)

An upper bound of the number of iterations needed to solve (4.51) is obtained by
considering C = C − γ logPt (4.53) and computing the value of Rt

0 in this case.
In this case,

Rt
0 ≤

maxCij −minCij + γ log maxPt − γ log minPt
γ

(4.54)

Rt
0 ≤

maxCij −minCij
γ

− log minP t (4.55)

�

With the proximal formulation, η is a “big” regularization. We are interested in the
logarithmic term of lemma 4.9:

log minPt−1 (4.56)

We know analyze how small could be minPt−1 as a function of t. Recall that, in
non-degenerate cases of the unregularized problem, limt→∞minPt−1 = 0.

Lemma 4.10. For some Cij, minPt−1 converges exponentially fast to zero, i.e.,

minPt = O(e−t) (4.57)

Proof : We can show this with a toy example. r = c = 1
n
1, Cij = 0 ∀(i, j) 6= (0, 0) and

C00 = 1. We can compute the analytical solution to show P00 converges to 0 exponentially
fast. For each subproblem, the cost only depends on P00 and is a trade off between the
C00 and the regularization of P00. �

Therefore, a naive application of the Lemma 4.9 and 4.10 gives the bound Rt
o = O(t).

This suggests that the number of iterations increases as t advances, which is not reflected
on practice.

We now propose a tighter bound on Rt
0 specific for our framework, leveraging that

A) we solve a sequence of subproblems decreasing the regularization and B) the sequence
converges to the optimal solution of the unregularized problem.

The key idea is that, in lemmas 4.9, 4.10, the analysis was made for any P t−1
ij and

Cij, without considering the interaction between them. Now we want to use the relation
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of P t−1
ij and Cij, as P t−1

ij is the solution (an approximation) of the subproblem with same
Cij and bigger regularization.

In fact, we can parametrize the sequence Pt as a family of solutions for a parametrized
problem with regularization η

t
. For t = 0, the solution is the maximum entropy matrix

with desired marginals r, c; that is P0 = rcT . For t → ∞, the solution is P ∗, which
contains entries equal to zero.

The intuition is that, as t increases, the small entries of Pij (those that will be zero at
the optimum) always decrease (because they converge to zero from above).

Lemma 4.11. Let δ ∈ R>0 be a threshold such that, if P t′
ij ≤ δ then P t

ij ≤ δ ∀t ≥ t′.
Then, Rt

0 for the sequence of subproblems (4.43) is bounded by:

Rt
0 ≤ log

(
1 +

nδ

r0

)
+
‖C‖∞
γ
− log δ (4.58)

Proof: Let Aij be the solution (exact or approximated) of the previous problem:
Aij = P t−1

ij . u∗ and v∗ are the optimal scaling factors of the current subproblem (using
the proximal formulation). We use ui0 = ln ri (see lemma 4.6) We now drop index i from
u to ease the notation.

∑
j

eu
∗−u0 ri Aij e

Cij/η ev
∗

= ri ∀i (4.59)

We define Aij = max{Aij, δ} and decompose A as A = A− Al
Now, minAij = δ, maxAlij = δ and Alij = 0 if Aij > δ. Let Ji be the set of row indices
such that Aij < δ for a given row i.

∑
j

eu
∗−u0 Aij e

Cij/η ev
∗

= 1 ∀i (4.60)∑
j

eu
∗−u0 Aij e

Cij/η ev
∗ −

∑
j∈Ji

eu
∗−u0 Alij e

Cij/η ev
∗

= 1 ∀i (4.61)

We now compute a lower bound for the term −
∑

j∈Ji e
u∗−u0 Alij e

Cij/η ev
∗

−
∑
j∈Ji

eu
∗−u0 Alij e

Cij/η ev
∗

= (4.62)

−
∑
j∈Ji

eu
∗ 1

ri
Alij e

Cij/η ev
∗ ≥ −

∑
j∈Ji

1

ri
Alij ≥ (4.63)

−
∑
j∈Ji

1

ri
δ ≥ −nδ

r0
(4.64)

Where we have used our assumption that if P t
ij ≤ δ then P t

ij ≤ δ. This means that

eu
∗
i e

C
η ev

∗
j ≤ 1 ∀Ji, because eu

∗
iPije

C
η ev

∗
j ≤ Pij.
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We denote min ri = r0 and use that Alij ≤ δ; |Ji| ≤ n (size of the set).

Using κ̃ = minij Aij e
−Cij
γ = δminij e

−Cij
γ = δκ

eu
∗
i−u0i κ̃

∑
j

ev
∗
j − nδ

r0
≤ 1 ∀i (4.65)

Now we apply logarithm and take the maximum:

max
i
u∗i − u0

i ≤ log

(
1 +

nδ

r0

)
− log κ− log δ + log

∑
j

ev
∗
j (4.66)

On the other hand, to get an upper bound for −mini u
∗
i − u0

i we use that Aij ≤ 1 to
obtain same result as in (4.38).

−min
i
u∗i − u0

i ≤ − log
∑
j

ev
∗
j + log τ (4.67)

with τ = maxij e
−Cij
γ . Adding the two bounds together (maxi u

∗
i − u0

i = −mini u
0
i − u∗i )

Rt
0 = max

i
u0
i − u∗i −min

i
u0
i − u∗i ≤ log

(
1 +

nδ

r0

)
+
‖C‖∞
γ
− log δ (4.68)

�

With this analysis, Rt
0 depends only on log δ and

‖C‖∞
γ

, which implies the complexity
of solving subproblems does not increase for high t. At this point, we are interested to
proof that δ has polynomial relation with n (size of problem) and ε (the accuracy of the
desired solution).

The value of r0 is not a problem. When ri is very small, we can solve an alternative
problem with bigger marginals so that r0 = O(ε/n) and still get same accuracy, see The-
orem 2 [12].

In our case, assuming that r0 = O(ε/n), we speculate that δ = O(ε2/n2). Our intuition
is as follows: we solve a sequence of subproblems starting with P 0 = rcT that converges
to P ∗. In the homotopy P 0 = rcT → P ∗, some Pij go from ε2/n2 → 0. Other Pij increase,
or increase at the beginning and decrease at the end. This conjecture would imply that,
if Pij < ε/n2 then it remains bounded by ε2/n2. In the next section, we try to proof this
assumption, that we formalize as:

Assumption 4.12. It exists a threshold δ = O(ε2/n2) such that:

if P t′

ij ≤ δ then P t
ij ≤ δ ∀t ≥ t′. (4.69)
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4.7 Notes about the evolution of P t
ij

In this section we study in detail the assumption 4.12.

Although we did not find a definitive proof, we share our thoughts and progress. In
this section, we will assume that we are solving each subproblem exactly. This is not true
in our framework, where we focused on analyzing the error induced by inexact solutions.

However, computing the evolution of P t
ij in an exact setting is the first step towards

the analysis of our approximate solution.

It is clear that the evolution of P t
ij is not monotone. At first the components that

are above a weighted average get increased. At latter iteration, they can decrease, as the
mass is accumulated at only the best components (low Cij). On the other hand, for our
formulation, we need to show that, if Pij goes beyond a threshold, it remains bounded by
it.

We want to show that Pij will either:

– decrease

– increase

– remains constant

– first increase, then decrease (only two modes)

We start with proof for the case of linear cost optimization on the simplex with entropic
regulation. This can be seen as a simpler model of the optimal transport problem with
just one dimension, without the marginals constraints.

Lemma 4.13. Let P (t) be the solution of:

min
P∈∆

∑
i

liPi +
η

t

∑
i

Pi logPi (4.70)

Where ∆ = {P ∈ Rn
≥0 :

∑
i Pi = 1}, l ∈ Rn

≥0 , η ∈ R and t ∈ N.
Then, Pi(t) either decreases, increases, remains constant or first increases and then

decreases.
Therefore, with P (0) = 1

n
1, the threshold δ (defined as in assumption 4.12) equals 1

n

Proof: The solution of (4.70) has an analytical expression:

Pi =
e−lit/η∑
j e
−ljt/η

(4.71)

Which can be rewritten as:
Pi = e−lit/η−log

∑
j e
−lj t/η

(4.72)

We now analyze the evolution of Pi as a function of t. Pi(t) defines a smooth trajectory
and we compute its derivative.

d

dt
Pi(t) = Pi(t)

(
−li +

∑
j lje

−ljt/η∑
j e
−ljt/η

)
1

η
= Pi(t) (−li +m(t))

1

η
(4.73)
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The term m(t) is a weighted average of the li

m(t) =

∑
j lje

−ljt/η∑
j e
−ljt/η

(4.74)

The sign of d
dt
Pi(t) depends on: m(t) − li. Note that limt→0m(t) = 1

n

∑
j lj and

limt→∞m(t) = mini li.
We show that m(t) decreases monotonically. Then, m(t) − li is either: a) always

negative b) first positive and then negative or c) always positive (converging to zero).
Note that the sign of m(t)− li determines the sign of d

dt
Pi(t)

We compute d
dt
m(t):

d

dt
m(t) =

1

η

(−
∑

j l
2
je
−ljt/η)(

∑
j e
−ljt/η) + (

∑
j lje

−ljt/η)(
∑

j lje
−ljt/η)(∑

j e
−ljt/η

)2 (4.75)

The sign is determined only by the numerator. We multiply terms in the sum, gather
terms together and use symmetry i, j.

−
∑
i,j

l2je
(−lj−li)t/η +

∑
i,j

lilje
(−lj−li)t/η = (4.76)∑

i,j

(lilj − l2j ) e(−lj−li)t/η = (4.77)∑
i 6=j

(−l2j + 2lilj − l2i )e(−lj−li)t/η = (4.78)∑
i 6=j

−(li − lj)2e(−lj−li)t/η ≤ 0 (4.79)

�
After showing this lemma in the simplex case, we wonder whether we could apply the

same strategy to proof the evolution of Pij(t) in optimal transport. Unfortunately, we do
not have a definitive answer. We report our progress. To ease the notation, we assume
η = 1. The optimization problems, parametrized by t are:

min 〈C,P 〉+
1

t

∑
ij

Pij lnPij (4.80)

The solution of (4.80) is
Pij(t) = eCijt+αit+βjt (4.81)

with αi = αi(t), βi = βi(t). As in Lemma 4.13, we are interested in the derivative.

d

dt
Pij(t) = Pij(t)

(
−Cij + αi + βj + tα̇i + tβ̇j

)
(4.82)

where α̇ = d
dt
α

We compute α, β, α̇, β̇ using the Lagrange dual

α(t), β(t) = arg min
∑
ij

e(−Cij+αi+βj)t − t < α, r > − t < β, c > (4.83)
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α(t), β(t) = arg min f(t, (α(t), β(t))) (4.84)

Because, f() this is convex and there are no constraints, the solution α(t), β(t) fulfils:

∇f(t, α(t), β(t)) = 0 (4.85)

∂

∂t
∇f(t, α(t), β(t)) +∇2f(t, α(t), β(t)) · (α̇, β̇)T = 0 (4.86)

From this equation we could try to get information about the evolution of (α̇, β̇). It is
possible to compute some expressions in close form, for example:

∇fi
∂t

=
∑
j

Pij lnPij (4.87)

∂2

∂αi∂βj
= t2Pij (4.88)

∂2f

∂αi∂αi′
= 0 (4.89)

∂2f

∂α2
i

= t2ri (4.90)

(4.91)

Our strategy is to get α̇, β̇ from equation (4.86) and then plug this result into (4.82),
trying to prove that d

dt
Pij(t) is either: positive, negative, zero, or first positive and later

negative. One of our concerns is that the solution of the optimization (4.83) is defined up
to an additive constant. This means that ∇2f has rank n2− 1. We are still unsure about
the consequences of this observation.

4.8 Summary and next steps

In this last section of the chapter, we put together all the results to get the computational
complexity of our algorithm to find an ε -approximate solution P T , :〈

P T − P ∗, C
〉
≤ ε (4.92)

Lemma 4.14. The computational complexity of algorithm 4, is

Õ

(
n2

ε3

)
(4.93)

where Õ(·) hides the logarithmic factors.

Proof : This final lemma is a combination of the results already presented in this
section. Note that we consider true our (still unproved) assumptions 4.12 and 4.8. We
recap here the main steps of the proof:

1. Using FTRL, we found the number of outer iterations T and the required precision
of the subproblems. Here we use the loose bound of lemma 4.2, although we believe
we could also use the tighter non-explicit bound of lemma 4.1.

Using G = 2 log n, we set η = ‖C‖∞ /G so that η = Õ(1). Using the average regret
bound:

2 ‖C‖∞
T

+
δT

2
≤ ε (4.94)

We set T = O(1/ε) and δ = O(ε2)
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2. With Theorem 4.4 we relate the accuracy of subproblems δ with the L1 marginal
violation ρ of Sinkhorn algorithm. The relation is linear so ρ = O(δ) = O(ε2).

3. The number of Sinkhorn iterations for solving subproblem t is k = O(Rt
0/ρ). We use

our new bound of Rt
o of lemma 4.11 with assumptions 4.8 and 4.12 to get Rt

0 = Õ(1)
(constant in all subproblems), so k = Õ(1/ε2)

4. Each Sinkhorn iteration has complexity n2

5. The final rounding step of the algorithm to get the desired marginals only induces
a small bounded error that depends linearly on the marginal violation. This does
not modify the overall complexity.

�
Here we summarize the missing parts of the analysis. Solving these issues will allow

us to prove the convergence and “faster” rates for our algorithm 4, providing a theoretic
analysis of the ε-scaling heuristic.

- Decide if we need to round the inexact solution of each subproblem of the sequence.
For the regret bound using FTRL, we are assuming that each matrix belongs to
the feasible set, i.e P t ∈ U(r, c). However, the study of the number of Sinkhorn
iterations assumes that no rounding is applied, so that P t has the structure coming
directly from Sinkhorn algorithm. One option to unify the criteria is to consider
FTRL in a relaxed convex set Ũ(r, c, ε̃) and apply the rounding algorithm to get
P ∈ U(r, c) only once at the end. Remember that the error in the cost introduced
by the rounding is “small” and bounded linearly by the ‖·‖1 between the marginals.
See also assumption 4.8.

Ũ(r, c, ε̃) = {P ∈ ∆n×n : ‖P1− r‖+
∥∥P T1− c

∥∥ ≤ ε̃} (4.95)

- We are still looking for a proof of Assumptions 4.12, 4.8, which are necessary to
apply the tight bound on the number of iterations of Sinkhorn iteration. These
assumptions should be proved in both cases, the exact and inexact setting, which
could be challenging or even not possible.

- Getting a tighter and explicit bound of
〈
P T − P ∗, C

〉
, refining the analysis of FTRL

or even using another framework. Given that the linear function is constant, we
believe that achieving T = O(1/ε) is possible.
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5 An alternative formulation: three more ideas

Here we present several short notes on different concepts and ideas that we also explored
during these months. Even though we could not reach any definitive conclusion following
these approaches, we hope future work gets inspired by these ideas and considerations.

5.1 Approximate projections

Again, our goal is to analyze the inexact proximal version of Sinkhorn, algorithm 5.

Algorithm 5 Approximate Proximal regularized Optimal Transport

Input: C, r, c, δ
let D(P, Pt) be the Bregman divergence.
for t = 1, . . . , T do
Pt = arg minδ 〈C,P 〉+ ηD(P, Pt−1), s.t Pt ∈ U(r, c)

end for
P T = 1

T

∑
Pt

Output: P T

Now, we analyze the algorithm using the framework of mirror descent with approxi-
mate projections, following the approach in [11].

Recall the basic mirror descent formulation in online learning:

Pt+1 = argmin
P∈U

η 〈`t, P 〉+DR (P, Pt) (5.1)

Which is equivalent to a two step process, where ΠR is a projection to the feasible set.

P̃t+1 = argmin
P∈∆

η 〈`t, P 〉+DR (P, Pt)

Pt+1 = ΠR

(
P̃t+1

) (5.2)

In case of inexact projections, Pt+1 is not the exact solution of (5.1), but a c-approximation.∥∥∥Pt+1 − ΠR

(
P̃t+1

)∥∥∥ ≤ c (5.3)

Solving each subproblem (5.1) using the Sinkhorn iteration can be modelled as a c-
approximate solution. Our goal is to relate the marginal violation of each iteration with
this c-approximation, and therefore to the complexity of the algorithm.

Some drawbacks of this approach are:

- in the basic formulation, lt is a time-varying (adversarial) vector. In our case lt = l ∀t

- there is not a clear way to leverage that Pt converges to P ∗, the solution of the
unregularized problem.

- The gradient of the Bregman divergence is unbounded when the entries of P ap-
proach to zero. In P ∗, several components are equal to zero, which complicates the
analysis.

25



5.2 Two player game

There is a recent interest in formulating optimization algorithms as two player zero sum
games, see [2], [1]. With this approach, the authors reformulate conditional gradient de-
scent (Frank Wolf) as a two player saddle point computation.

A basic idea of this formulation is that the duality gap of the saddle point computation
is the sum of the regret of both players, see [2], [1].

To apply this algorithm to our setting, we have designed a two player framework that
mimics Sinkhorn iterations and the proximal transport formulation. The key idea is to
introduce the error induced by inexact projections in the framework and to compute how
it gets accumulated and its impact on the duality gap.

In our case, the convex-concave function (two player game) is the Lagrangian:

g(P, y) = Lx≥0(P, α, β) = 〈C,P 〉 − 〈β, P1− r〉 − 〈α, P1− c〉 (5.4)

Algorithm 6 Two player game optimal transport
Input: C, r, c
let αt, βt be estimates of the dual variables of (5.4), and ut, vt the scaling factors of the
current projection.
for t = 1, . . . , T do

(Player 1)

αt, βt, ut, vt = Π(Pt−1 · e
−C
η ) (5.5)

(Player 2)

Pt = Pt−1 · e
−C
η · eut+vt (5.6)

end for
P = 1

T

∑
Pt

Output: P

Lemma 5.1. Suppose that player 1 of algorithm 6 makes perfect projections Π, then

average regret on the dual gap is O
(

1√
T

)
Proof : The regret on the dual gap is the sum of the regrets of the two players. Player

1 makes perfect projections:

Pt ∈ Ur,c ∀t, Pt1− c = 0, P T
t 1− r = 0 (5.7)

The regret of the first player (it tries to maximize) is:

g(PT , y
∗)− 1

T

∑
g(Pt, yt) = 〈C,PT 〉 −

1

T

∑
〈C,Pt〉 = 0 (5.8)

where y = (α, β). The regret of the second player (tries to minimize):

1

T

∑
g(Pt, yt)− g(P ∗, yt) =

1

T

∑
gt(Pt)−

1

T

∑
gt(P

∗) = R2 (5.9)
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Note that the second player is playing mirror descent on a sequence of linear loss
functions: lt = −C

η
+ ut + vt

Without assuming any smoothness in the vector gt, the regret bound is the classical
O( 1√

T
). Potentially, we believe that this could be refined to O( 1

T
) using the fact that the

linear functions are not adversarial and Xt → X∗, αt → α∗ and βt → β∗. �

The learning rate η should be chosen to achieve a good trade off between the compu-
tation load of player 1 and the regret of player 2.

So far we have analyzed the perfect projection setting. But our goal is to analyze the
approximate version, where Player 1 only uses Sinkhorn iterations and computes approx-
imate solutions.

We provide here some short and informal thoughts:
The vectors αt, βt, ut, vt are approximations and now, after the update of player 2, Pt does
not have marginals r, c: Pt1− r 6= 0 or P T

t 1− c 6= 0.

In the approximate setting, the first player has also some regret. We try to bound
g(Pt, αt)− g(Pt, α

∗) (assume w.l.o.g that columns are scaled after Sinkhorn algorithm).

g(Pt, αt)− g(Pt, α
∗) ≤ 〈αt − α∗, Pt − r〉 (5.10)

One of the advantages of this formulation is that with the Sinkhorn algorithm we
control directly the marginal violation ‖Pt1− r‖1. Therefore, we could use directly the
“loose” bound:

〈αt − α∗, Pt − r〉 ≤ ‖αt − α∗‖∞ ‖Pt1− r‖1 (5.11)

In non degenerate cases, αt → α. However, to get a regret bound we still need a more
precise description of the speed of convergence and a notion of the distance αt → α∗ as a
function of t. Another difficulty is that αt is an approximate solution of (5.5).

5.3 Potentials

Another idea to analyze the proximal regularized formulation of optimal transport is to
find a potential that decreases in each iteration.

There is a well known potential function for analyzing Sinkhorn iterations with a fixed
regularization, based on the dual function, see (4.30). However, it is still unclear how this
potential could be extended to our proximal regularized setting.

Note that each iteration reduces the potential associated to the current regularization.
However, this potential function is also changing each iteration, which makes the analysis
more complicated.
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6 Conclusion

The optimal transport distance is a powerful and useful metric to compare probability
distributions in statistics and machine learning. In contrast to alternative distance mea-
sures, the main drawback is the computational complexity.

Adding entropic regularization to the original linear program, we can find approximate
solutions much faster (reducing complexity from O(n3) to O(n2), where n is the histogram
size) using the Sinkhorn algorithm (iterative matrix scaling).

However, finding solutions with small error requires using small regularizations, which
increases the number of Sinkhorn iterations. The dependence is k = O(ε−2), where k is
the number of Sinkhorn iterations and ε the approximate error.

In this report, we have proposed an algorithm based on proximal regularization. It
consists on solving a sequence of problems decreasing the regularization, and resembles
the well-known heuristic ε-scaling.

Using a follow the regularized leader analysis and novel bounds for this iterative and
proximal regularized setting, we bound the complexity of our algorithm as O(n2/ε3). How-
ever, this result depends on two still unproved assumptions, that we leave for future work.

We have not analyzed the experimental performance of the algorithm, but we believe
it should be equivalent to ε-scaling. This strategy has been shown to outperform the
standard approach of solving only one scaling problem with very small regularization.
Moreover, one of the advantages of our algorithm and ε-scaling is that they are any-time
algorithms, producing better solutions as more computational time is available.
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