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Autonomy of Robotic Systems

Robots excel at performing repetitive tasks,
e.g., in car factories.
- Optimal Control (following a reference trajectory)
- Motion Planning (creating a collision-free path).

[1]
But future robotic applications (e.g., in construction, elderly care, home assistance...) will
require long-term planning of physical interactions with the environment.

[2] [3] [4] [5]
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Task and Motion Planning
Task and Motion Planning (TAMP) in Robotics.

Initial state Symbolic goal

tower blue-gray-red-green
in the center of the table

Assumption: we have a good model of the robot and the environment (e.g., the shape of the objects,
where they are ...).
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◦ ◦
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Understanding TAMP in 120 Seconds. Two levels of abstraction
Goal: e.g, build a tower with blocks (requires long-term planning of physical interactions).
(High-level Task Planning): What to do? – e.g., pick the red block with the left robot.
Discrete planning problem (PDDL, STRIPS).
A* with Heuristics This is only a simplification! No continuous information.

A B C

A

B C

A

B C

A

B

C

A

B

C

(Low-level Motion Planning) How to do? Collision-free trajectory, stable grasps, pushing
interactions, continuous space. The trajectory must fulfill physics constraints.
Trajectory Optimization and/or Motion Planning. Computationally expensive.
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Understanding TAMP in 120 Seconds.
Strong dependencies between task planning and motion planning.
1 - The motion planning problem (cost, collision and constraints) depend on the task plan.
2 - Often task plans fail at the motion level.

Example 1. Task Plan: Pick object
– but the object is too far!

Example 2. Task Plan: Pick object
and place object on the table
– but the table is too far!
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Related Work – How Can We Solve TAMP?
How to combine and integrate discrete task planning and continuous motion planning (which
tools)?

Sample-Based Approaches to TAMP : Incrementally discretize the continuous space. Tools
from motion planning: constrained sampling and sample-based motion planning
(RRT, PRM). (Garrett et al., 2020; Srivastava et al., 2014; Dantam et al., 2016).
Individual/constrained sampling is inefficient if there are long-term
dependencies.

Optimization-Based Approaches to TAMP : Compute a motion that fulfills a high-level plan
with optimization methods. (Toussaint et al., 2018). Good joint reasoning, but
difficult to scale to longer tasks.

The TAMP problem appears under other names: multi-modal planning, manipulation planning,
hybrid planning, contact planning, AI planning with numerical variables ...
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Research Statement
Improve general-purpose task and motion planning by better leveraging the problem structure
and a more effective combination of algorithmic and planning tools.

General-Purpose TAMP
Pick, place, and push
Handover and assembly
Tool utilization
Multi-robot coordination
Mobile and fixed robots

Problem Structure
Temporal dimenson, multiple objects, and
multiple robots.

Algorithmic and Planning Tools
Trajectory optimization, constrained sam-
pling, discrete planning, and learning.
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Presentation Overview
Factored Structure of Task and Motion Planning (Ch. 3)

Part I Integrated Planning and
Optimization for Task and Mo-
tion Planning

Part II Meta-Solvers: Adaptive
Combination of Sampling and
Optimization Methods

Part III Accelerated Task and
Motion Planning with Learning
Methods
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Factored Structure of Task and Motion Planning

Task plan
↓

Motion planning problem

(Unfactored)
Nonlinear program

min f (x , Task plan),
s.t. h(x , Task plan) = 0,

g(x , Task plan) ≤ 0.

x = [b0, q0, b1, q1, τ b
1 , τ b

2 , ...]

h and g are vector-valued
constraint functions.

Factored nonlinear program
Task plan: Pick Object, Place Object
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Different high-level task plans imply different Factored-NLPs!
– But they share the same small building blocks.

3 key properties: Temporal structure, sparse factorization, repeatable local structure.

Equivalent factored representations have been used in recent Sample-Based TAMP solvers
Garrett et al. (2018); Lagriffoul et al. (2014). We contribute a new formulation and novel
applications in planning and learning.
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Presentation Overview

Part I Integrated Planning and
Optimization for Task and Mo-
tion Planning

Part II Meta-Solvers: Adaptive
Combination of Sampling and
Optimization Methods

Part III Accelerated Task and
Motion Planning with Learning
Methods

(Ch. 4 ICAPS 2021)
(Ch. 5 RAL 2022)
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Part I. Integrated Planning and Optimization for Task and
Motion Planning

High-Level Task Planner

A

B C

A

B C

Trajectory Optimization

Task Plan

Feedback? Solution
Feedback when the plan fails is important!

No feedback Failure.
Feedback = Task Plan Inefficient. E.g., with 5 objects and 2 robots, there are
approximately (2 · 5)10 plans of length 10.
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Part I – Ch. 5: Conflict-Based Search in Factored Logic
Geometric Programs

High-Level Task Planner

A

B C

A

B C

Trajectory Optimization

Task Plan

Subsets of nonlinear
constraints

Solution

Ortiz-Haro, J., Karpas, E., Katz, M., and Toussaint, M. (2022). A Conflict-Driven Interface Between
Symbolic Planning and Nonlinear Constraint Solving. IEEE Robotics and Automation Letters.
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Bidirectional Factored interface between ‘predicates‘ (partial states) in the task plan and
‘constraints‘ in the trajectory optimization problem.

Object A is on the ini-
tial position

Robot is holding ob-
ject B → Object B is
on top of A
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Two technical contributions
1 - How to find a minimal subset of infeasible constraints?
2 - How to reformulate the planning problem to block this conflict?

Example of infeasible nonlinear constraints

Pick object
– but the object is too far!

b b

q

Grasp

Kin
Ref

This is only one example! We can discover any conflict, potentially involving multiple motion
phases, robots, objects, collisions ...
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Results

◦ ◦ ◦
Complete and general (assuming completeness of the nonlinear solver!)
Planning time: 2-30 seconds.

Benchmark
Previous optimization-based solvers (e.g., MBTS): 2 robots, 4 objects, 8 actions.
Ours 4 robots, 8 objects, 24 actions.

Exponential complexity! Adding 1 object makes the problem x2 harder.
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Presentation Overview

Part I Integrated Planning
and Optimization for Task
and Motion Planning

Part II Meta-Solvers:
Adaptive Combination of
Sampling and Optimization
Methods

Part III Accelerated Task
and Motion Planning with
Learning Methods

Ch. 6 - ICRA 2021
Ch. 7 - Preprint
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Part II - Meta-Solvers: Adaptive Combination of
Sampling and Optimization Methods

Sampling (decomposition) Optimization (No decomposition)

First grasp, then robot, ... All variables jointly
✓Problem is decomposable ✓Joint dependencies

✗Joint dependencies ✗Infeasible local optima
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Part II - Ch. 7: Towards Meta-Solvers for Task and Motion
Planning

Symbolic Goal:
“Put the two blocks
on the red table”

Use sampling better! Use optimization better!

TAMP Solver = Task Plan + Motion Plan
TAMP Meta-Solver = Task Plan + Motion Plan + Optimization/Sampling Strategy

Meta-Solver useful for non-expert users + good performance in any problem.

Ortiz-Haro, J., Erez Karpas and Marc Toussaint. Towards Meta-Solvers for Task and Motion Planning.
Preprint. Future submission to ICRA 2025, or ICAPS 2025.
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How to design a TAMP Meta-Solver?

Discrete-continuous state
in TAMP: (s, x)

A

B C

Discrete s Continuous x (free or assigned)
To bridge the gap we need a more general representation: the computational state.

Computational State in TAMP:
(s, x, X̃ , Φ)

s ∈ S is a discrete state.
x ∈ X is a fixed continuous state.
X̃ is a set of free continuous states.
Φ is a set of nonlinear constraints on the
free states.

Planning in computational space. Two type of compute actions:
Compute values for free variables.
Extend the high-level task plan (e.g, ‘pick object‘) (changes the discrete state and creates
more free variables with constraints).
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We can recover traditional TAMP solvers as special search algorithms in the space of
computational states.

Optimization-Based TAMP Solver: “MultiBound Tree Search for LGP”
Sample-Based TAMP Solvers: “PDDLStream”

The Meta-solver is an informed search algorithm in the space of computational states.
Heuristic: discrete task planning.
Incrementally enumerates the number of times we repeat a numeric expansion.

Optimization (Best!) Sampling (Worst!) Meta-Solver (Second Best!)

With Free Variables Without Free Variables Failed Numeric Expansion Solution
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Results

6 7

Our “simple” meta-solver already outperforms both Opt./Sample-based TAMP Solvers.

Limitation: the current meta-solver cannot scale to more objects or plans that require a lot of
actions!
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Presentation Overview

Part I Integrated Planning
and Optimization for Task
and Motion Planning

Part II Meta-Solvers:
Adaptive Combination of
Sampling and Optimization
Methods

Part III Accelerated Task
and Motion Planning with
Learning Methods

Ch.8 - CoRL 21
Ch.9 - ICRA 23
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Part III – Accelerated Task and Motion Planning
with Learning Methods

Why do we need data and learning in model-based Task and Motion Planning?

Offline: Generate a dataset of solutions with
our solver + Learn weights of a parametric
function (neural network). Slow!

Online: Use the learned function (heuristic,
classifier) to accelerate our solver on new
problems. Fast!
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Part III – Ch. 9: Learning Feasibility of Factored Nonlinear
Programs

Input: Factored nonlinear program Output: Minimal infeasible subsets of constraints

a0

b0

q0

w0

a1

b1

q1

w1

a2

b2

q2

w2

a3

b3

q3

w3

Ref

Ref

Ref Ref Ref

Ref

Grasp

Grasp Pos

Ref

Kin

Kin Kin

EqualEqual Equal

b b

a

q

Grasp

Kin
Ref

Ref

a3

b3

Pos

Ref

W/o Learning Factored NLP Conflict Extraction
Ours Factored NLP Graph Neural Network → Small Candidate Conflict Extraction

Conflict extraction – remove one constraint at a time and solve the nonlinear program again (linear
complexity on the number of constraints).

Learning Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning J. Ortiz-Haro, J.-S. Ha, D.
Driess, E. Karpas, and M. Toussaint. IEEE Int. Conf. on Robotics and Automation (ICRA), 2023.
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How to predict infeasible subsets of variables and constraints?

Factored NLP Neural message passing

Node scores Infeasible subgraphs

Neural message passing
Node classifier = probability of
infeasibility
Infeasible subgraphs = Filter +
connected components analysis

Increase/decrease the threshold to get
more/less candidates.
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Generalization +action/blocks/robots
(Training dataset: 5000 labelled factored NLPs)
Scene (object, table and robot positions) is encoded locally in the feature vector. Additional
variables and constraints share networks! Alternative architectures and representations
cannot generalize.

4-50x Acceleration in conflict extraction
95% Node accuracy
65% Conflicts found, 45% are minimal
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Conclusion: Summary of Contributions
Factored Nonlinear Program in TAMP – General-purpose, problem-independent, useful
representation for both planning and learning. (Ch. 3, also appears in Ch. 5,6,8 and 9).

Part I Integrated Planning
and Optimization for Task
and Motion Planning

Part II Meta-Solvers:
Adaptive Combination of
Sampling and Optimization
Methods

Part III Accelerated Task
and Motion Planning with
Learning Methods

Combine discrete planning
with trajectory optimiza-
tion with a conflict-based
bidirectional interface (task
plan prefixes or subsets
of infeasible constraints).

(Ch. 4, ICAPS 22)
(Ch. 5, RAL 22).

Neither optimization nor
sampling is superior. We
need mixed approaches that
can adaptively choose
compute operations.

(Ch. 6, ICAPS 22)
(Ch. 7, Preprint)

Acceleration of expensive
model-based operations.
Different architectures for
two different operations.

(Ch. 8, CoRL 21)
(Ch. 9, ICRA 23)
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Conclusion: Limitations
Factored Nonlinear Program in TAMP – It requires a custom software implementation. No
off-the-shelf simulators or trajectory optimization frameworks.

Part I Integrated Planning
and Optimization for Task
and Motion Planning

Part II Meta-Solvers:
Adaptive Combination of
Sampling and Optimization
Methods

Part III Accelerated Task
and Motion Planning with
Learning Methods

Not complete if the nonlinear
solver fails to find a solution
(e.g. due to a bad initializa-
tion).

Software complexity and en-
gineering effort. Worse scal-
ability to large TAMP prob-
lems.

Small learning component in
a full model-based solver – it
requires solvers, models, and
data.
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Open Challenges and Future Work

TAMP Benchmarks – Difficult to measure progress. PDDL (discrete planning) and
OpenAI Gym (RL) are good inspirations.

Optimization-Based Solvers in Robotics:
It works most of the time – this is not enough for real-world applications and broader
adoption! Better restart/warm-start strategy.
Learning in TAMP – We want our models to generalize to new problems and new
environments. Leverage model-based structure and data of physical interactions for
learning universal policies.
Perception for TAMP Manipulation and Precise Contact Planning
Overlooked in this thesis. Robust systems require integrated perception, planning, and
control.
But mastering first model-based TAMP is fundamental! Long-term planning in
continuous spaces is very hard! – Structure, models and planning will help.
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