
Factored Task and Motion Planning
with Combined Optimization,

Sampling and Learning

by Joaquim Ortiz-Haro, M.Sc.

A thesis submitted for the degree of

Doctor of Natural Sciences (Dr. rer. nat.)

TU Berlin

Faculty IV - Electrical Engineering and Computer Science

Learning and Intelligent Systems

Berlin, November 2023

Ph.D. Advisor: Prof. Dr. Marc Toussaint (TU Berlin)
Doctoral Committee:
Chair: Prof. Dr. Marc Alexa (TU Berlin)
Reviewer: Prof. Dr. Marc Toussaint (TU Berlin)
Reviewer: Prof. Dr. Georg Martius (University of Tübingen)
Reviewer: Prof. Dr. Tomás Lozano-Pérez (MIT)

Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Resumen xi

Resum xiii

1. Introduction 1
1.1. Sampling and Optimization Methods for Task and Motion Planning 4
1.2. Accelerating Model-Based Solvers with Deep Learning 7
1.3. The Factored Structure of Task and Motion Planning 8
1.4. Reading Guide and Statement of Contributions 9

2. Background 13
2.1. Nonlinear Programs in Robotics . 13
2.2. Classical Planning . 19
2.3. Logic Geometric Programming . 23

2.3.1. Multi-Bound Tree Search . 29
2.4. Related Work in Task and Motion Planning . 30

3. Factored Structure of Task and Motion Planning 33
3.1. Factored-NLP – Definition and Properties . 34
3.2. Pick and Place – The Basic Building Block . 36
3.3. Complex Manipulation Sequences . 39

I. Integrated Planning and Optimization for Task and Motion Planning

4. Diverse Task Planning for Solving Logic Geometric Programs 45
4.1. Introduction . 45
4.2. Related Work . 47
4.3. Factorization of the Discrete State Space . 47
4.4. Diverse Task Planning for LGP . 48

4.4.1. Prefixes as Conflicts . 49

i

Contents

4.4.2. Forbidding Plans by Prefixes . 51
4.4.3. Feasibility Checking . 52

4.5. Metareasoning for Conflict Extraction . 53
4.6. Diversity Criteria and Complete Algorithm . 55
4.7. Empirical Evaluation . 58

4.7.1. Benchmarks . 58
4.7.2. Baselines . 58
4.7.3. Results . 59

4.8. Limitations . 61
4.9. Conclusions . 62

5. Conflict-Based Search in Factored Logic Geometric Programs 63
5.1. Introduction . 63
5.2. Related Work . 64
5.3. Problem Formulation . 66
5.4. Factored-NLP: a Bidirectional Interface Between Task and Motion 68
5.5. Overview: Factored-NLP Planner . 71
5.6. Finding Small Infeasible Subgraphs . 72
5.7. Reformulation of the Discrete Planning Task 74
5.8. Experimental Results . 76

5.8.1. Relaxations for Finding Infeasible Subgraphs 77
5.8.2. Benchmark . 79
5.8.3. Ablation Study . 80
5.8.4. Scalability . 80
5.8.5. Real-Time Planning in the Real World 81

5.9. Limitations . 82
5.10. Conclusion . 83

II. Meta-Solvers: Adaptive Combination of Sampling and Optimiza-
tion Methods

6. Learning Optimal Sampling Sequences for Robotic Manipulation 87
6.1. Introduction . 87
6.2. Related Work . 88
6.3. Sampling Sequences in the Pick and Place Task Plan 89
6.4. Sequential Sampling in Factored-NLPs as a Markov Decision Process 91
6.5. Choosing Computational Operations with Monte-Carlo Tree Search 94

6.5.1. Upper Confidence Tree (UCT) . 94
6.5.2. Pruning the Sampling Tree Using the Factored-NLP 95
6.5.3. Family of Problems and Tree Warm Start 96

ii

Contents

6.6. Experimental Results . 97
6.6.1. Scenarios . 97
6.6.2. Computational Operations . 98
6.6.3. Number of Samples and Approximate Coverage 98

6.7. Limitations . 100
6.8. Conclusion . 101

7. Towards Meta-Solvers for Task and Motion Planning 103
7.1. Introduction . 103
7.2. Related Work . 104
7.3. The Gap Between Sampling and Optimization Approaches 105
7.4. The TAMP Computation Tree . 107
7.5. An Example of a TAMP Computation Tree and Computational States 110
7.6. A Practical Meta-Solver for TAMP . 113

7.6.1. Algorithm . 113
7.7. Analyzing and Designing TAMP Solvers with the TAMP Computation Tree . 116
7.8. Experimental Results . 119

7.8.1. Example Execution of the Three Algorithms 122
7.8.2. Comparison . 124
7.8.3. Discussion of Scalability . 127

7.9. Limitations . 128
7.10. Conclusion . 128

III. Accelerated Task and Motion Planning with Learning Methods

8. Deep Generative Constraint Sampling 133
8.1. Introduction . 133
8.2. Related Work . 134
8.3. Sampling on a Constraint Manifold . 136
8.4. Training Deep Generative Models to Sample on Constraint Manifolds 137

8.4.1. Wasserstein Distance and Adversarial Formulation 138
8.5. Structured Generative Model by Exploiting Factorization 139

8.5.1. Directed Graphical Model and Sequential Sampling 140
8.5.2. The Advantage of Factorization for Modeling Multimodality 141

8.6. Experiments . 142
8.6.1. Image-Based Problem Representation 142
8.6.2. Scenarios . 142
8.6.3. Ablation Study . 144
8.6.4. Benchmark: Generative Models in Nonlinear Optimization 144

8.7. Limitations . 146

iii

Contents

8.8. Conclusion . 150

9. Learning Feasibility of Factored Nonlinear Programs 151
9.1. Introduction . 151
9.2. Related Work . 152
9.3. Formulation . 154

9.3.1. Minimal Infeasible Subgraph in a Factored-NLP 154
9.3.2. Minimal Infeasible Subgraph as Variable Classification 155
9.3.3. GNN with the Structure of a Factored-NLP 156
9.3.4. Algorithm to Detect Minimal Infeasible Subgraphs 158

9.4. Factored-NLP for Manipulation Planning . 158
9.4.1. Structure of the Factored-NLP . 158
9.4.2. Encoding of the Problem in the Initial Feature Vectors 160

9.5. Experimental Results . 160
9.5.1. Data Generation . 161
9.5.2. Accuracy of the GNN Classifier . 162
9.5.3. Finding Minimal Infeasible Subgraphs 163
9.5.4. Integration in a Conflict-Based TAMP Planner 165

9.6. Limitations . 165
9.7. Conclusion . 165

10. Conclusions 167
10.1. Summary of Contributions . 167
10.2. Open Challenges and Future Work . 169
10.3. Final Remarks . 173

Bibliography 175

Appendix A. Complete List of Publications 189

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Marc Toussaint. Thank you
for your guidance and encouragement throughout my Ph.D. Your knowledge and passion
for robotics research, mastering both theory and practice, have been an inspiration to me.

I am very grateful to the members of the doctoral committee, Prof. Georg Martius and Prof.
Tomás Lozano, whose research I have followed closely and admired, for reviewing and
evaluating my work. I am confident that your feedback and evaluation will significantly
contribute to the refinement of this thesis. Additionally, I would like to express my gratitude
to Prof. Marc Alexa for serving as the chair of my doctoral committee.

A heartfelt thanks to Erez Karpas and Michael Katz; collaborating with you has been a great
learning experience and a pleasure, and I really enjoyed the short research stay at Technion
in Haifa. My sincere appreciation goes to Prof. Georg Martius and Prof. David Remy for
their advice on the Thesis Advisory Committee of the IMPRS-IS program.

I have been lucky to work in a group of great colleagues and friends. Danny, Ingmar,
Valentin, Svetlana, Pia, Akmaral, Khaled, Wolfgang, Ilaria, Oz, Andreas, and Jung-Su, I
have learned a lot from each one of you. Collaborating on research projects has been
a pleasure, and you have created a pleasant and stimulating work environment. I look
forward to meeting you again at robotics conferences all around the world!

Because research often requires time to step away and enjoy other facets of life, I would like
to thank all the wonderful friends I met in Berlin. I had a great time here with all of you,
and I look forward to keeping in touch and seeing you again.

And finally, but most importantly, I would like to thank all my family, whose support has
been fundamental, especially when I needed it the most. Your love, support, and belief in
me have been my pillars of strength. I dedicate this achievement to you, with immense love
and gratitude. Thank you for always being there.

v

Abstract

Modern robots excel at performing simple and repetitive tasks in controlled environments;
however, future applications, such as robotic construction and assistance, will require long-
term planning of physical interactions.

These problems can be formulated as Task and Motion Planning (TAMP). The goal is to
find how the robot should move to solve complex tasks requiring multiple interactions
with objects in the environment, such as building furniture or cleaning and organizing
the kitchen. However, TAMP is notoriously difficult to solve because it involves a tight
combination of task planning and motion planning, considering geometric and physical
constraints.

In this thesis, we aim to improve the performance of TAMP algorithms from three comple-
mentary perspectives. First, we investigate the integration of discrete task planning with
continuous trajectory optimization. Our main contribution is a conflict-based solver that
automatically discovers why a task plan might fail when considering the constraints of the
physical world. This information is then fed back into the task planner, resulting in an
efficient, bidirectional, and intuitive interface between task and motion, capable of solving
TAMP problems with multiple objects, robots, and tight physical constraints.

Traditionally, there have been two competing approaches to solving TAMP problems:
sample-based and optimization-based methods. In the second part, we first illustrate
that, given the wide range of tasks and environments within TAMP, neither sampling nor
optimization is superior in all settings. To combine the strengths of both approaches, we
have designed meta-solvers for TAMP, adaptive solvers that automatically select which
algorithms and computations to use and how to best decompose each problem to find a
solution faster.

A third promising direction to improve TAMP algorithms is to learn from previous solutions
to similar problems. In the third part, we combine deep learning architectures with model-
based reasoning to accelerate computations within our TAMP solver. Specifically, we target
infeasibility detection and nonlinear optimization, focusing on generalization, accuracy,
compute time, and data efficiency.

At the core of our contributions is a refined, factored representation of the trajectory opti-
mization problems inside TAMP. This structure not only facilitates more efficient planning,
encoding of geometric infeasibility, and meta-reasoning but also provides better general-
ization in neural architectures.

vii

Zusammenfassung

Moderne Roboter sind hervorragend darin, einfache und wiederholte Aufgaben in kon-
trollierten Umgebungen auszuführen. Zukünftige Anwendungen, wie die robotergestützte
Roboterassistenz und das robotergestützte Bauen, werden jedoch eine langfristige Planung
physischer Interaktionen erfordern.

Diese Probleme können als Aufgaben- und Bewegungsplanung (Task and Motion Plan-
ning, TAMP) formuliert werden. Dabei ist das Ziel, lange Abfolgen von Roboteraktionen zu
finden, um komplexe Aufgaben zu lösen, die mehrere Interaktionen mit der Umgebung er-
fordern und dabei geometrische und physische Beschränkungen berücksichtigen. TAMP ist
bekannterweise sehr schwer zu lösen, da es eine enge Kombination von Aufgabenplanung
und Bewegungsplanung erfordert.

In dieser Arbeit zielen wir darauf ab, die Leistung von TAMP-Algorithmen aus drei komple-
mentären Perspektiven zu verbessern. Zuerst untersuchen wir, wie man Aufgabenplaner
mit Trajektorienoptimierung integriert. Unser Hauptbeitrag ist ein neues Framework, das
automatisch entdeckt und kodiert, warum ein Aufgabenplan angesichts der Beschränkun-
gen der physischen Welt scheitern könnte. Dies führt zu einer effizienten und intuitiven
Integration von Aufgaben- und Bewegungsplanung.

Traditionell gab es zwei konkurrierende Ansätze, um TAMP-Probleme zu lösen: Stich-
probenbasierte und optimierungsbasierte Methoden. Im zweiten Teil zeigen wir zuerst,
dass angesichts der Vielzahl von Aufgaben und Umgebungen innerhalb der TAMP weder
Stichproben noch Optimierung in allen Situationen überlegen sind. Um die Stärken bei-
der Ansätze zu kombinieren, haben wir Meta-Lösungsalgorithmen für TAMP entwickelt:
adaptive Solver, die automatisch auswählen, welche Algorithmen und Berechnungen ver-
wendet werden sollen und wie jedes Problem am besten zerlegt werden kann, um eine
Lösung schneller zu finden.

Ein dritter vielversprechender Ansatz zur Verbesserung der TAMP-Algorithmen besteht
darin, von früheren Lösungen ähnlicher Probleme zu lernen. Im dritten Abschnitt schlagen
wir zwei verschiedene neuronale Architekturen vor, um teure Berechnungen in unserem
Lösungsalgorithmus, nämlich Unlösbarkeitserkennung und nichtlineare Optimierung, mit
Hilfe von Deep-Learning-Methoden zu beschleunigen.

Im Kern unserer Beiträge steht eine verfeinerte, faktorisierte Darstellung der Trajektorienop-
timierungsprobleme innerhalb von TAMP. Diese Struktur erleichtert nicht nur eine effizien-
tere Planung und Kodierung geometrische Unlösbarkeiten, sondern ermöglicht auch das
Schlussfolgern über potenzielle Rechenoperationen und bietet eine bessere Generalisierung
in neuronalen Architekturen.

ix

Resumen

Los robots modernos sobresalen en la realización de tareas simples y repetitivas en entornos
controlados; sin embargo, las aplicaciones futuras, como la construcción y la asistencia
robótica, requerirán una planificación autónoma de diversas interacciones físicas.

Estos problemas se pueden formular como Planificación de Tareas y Movimientos (TAMP,
por sus siglas en inglés). El objetivo es encontrar cómo debe moverse el robot para resolver
tareas complejas que requieren múltiples interacciones con los objetos del entorno, como
por ejemplo, montar un mueble o limpiar y recoger la cocina. Sin embargo, la resolución
de TAMP es notoriamente difícil porque implica una combinación estrecha de planificación
de tareas y planificación de movimientos, considerando restricciones geométricas y físicas.

En esta tesis, nuestro objetivo es mejorar el rendimiento de los algoritmos TAMP desde tres
perspectivas complementarias. Primero, investigamos la integración de la planificación de
tareas discretas con la optimización continua de trayectorias. Nuestra principal contribución
es un algoritmo que descubre automáticamente por qué un plan de tareas podría fallar al
considerar las restricciones del mundo físico. Esta información retroalimenta al planificador
de tareas, resultando en una interfaz bidireccional e intuitiva entre tareas y movimientos,
capaz de resolver problemas con múltiples objetos, robots y restricciones físicas complejas.

Tradicionalmente, ha habido dos enfoques competitivos para resolver problemas TAMP:
métodos basados en muestreo y métodos basados en optimización. En la segunda parte,
primero ilustramos que, dada la amplia variedad de tareas y entornos dentro de TAMP,
ni el muestreo ni la optimización son superiores en todos los escenarios. Para combinar
las fortalezas de ambos enfoques, hemos diseñado meta-algoritmos para TAMP, algorit-
mos adaptativos que seleccionan automáticamente qué algoritmos y cálculos usar y cómo
descomponer mejor cada problema para encontrar una solución más rápidamente.

Una tercera dirección prometedora para mejorar los algoritmos TAMP es aprender de
soluciones previas a problemas similares. En la tercera parte, combinamos arquitecturas
de aprendizaje profundo con razonamiento basado en modelos para acelerar los cálculos
dentro de nuestros algoritmos. Específicamente, nos enfocamos en la detección de qué
restricciones físicas son inviables y en la optimización no lineal, centrándonos en la gener-
alización, precisión, tiempo de ejecución y la eficiencia de datos.

En el núcleo de nuestras contribuciones se encuentra una representación refinada, des-
glosada y fragmentada de los problemas de optimización de trayectorias dentro de TAMP.
Esta estructura no solo facilita una planificación más eficiente, análisis de restricciones ge-
ométricas y meta-algoritmos, sino que también proporciona una mejor generalización en
arquitecturas neuronales.

xi

Resum

Els robots moderns excel·leixen en la realització de tasques simples i repetitives en entorns
controlats; tanmateix, les aplicacions futures, com la construcció i l’assistència robòtica,
requeriran una planificació autònoma de diverses interaccions físiques.

Aquests problemes es poden formular com a Planificació de Tasques i Moviments (TAMP,
per les seves sigles en anglès). L’objectiu és trobar com s’ha de moure el robot per resoldre
tasques complexes que requereixen múltiples interaccions amb els objectes de l’entorn, com
ara muntar un moble o netejar i recollir la cuina. La resolució de TAMP és notòriament
difícil perquè requereix una combinació estreta de planificació de tasques i planificació de
moviments, considerant restriccions geomètriques i físiques.

En aquesta tesi, el nostre objectiu és millorar el rendiment dels algoritmes TAMP des de
tres perspectives complementàries. Primer, investiguem la integració de la planificació de
tasques discretes amb l’optimització contínua de trajectòries. La nostra principal contribució
és un algorisme que descobreix automàticament per què un pla de tasques podria fallar
quan es consideren les restriccions del món físic. Aquesta informació retroalimenta al
planificador de tasques, resultant en una interfície bidireccional entre tasques i moviments,
capaç de resoldre problemes amb múltiples objectes, robots i restriccions físiques.

Tradicionalment, hi ha hagut dos enfocaments competitius per resoldre problemes TAMP:
mètodes basats en mostreig i mètodes basats en optimització. A la segona part, primer
il·lustrem que, donada l’àmplia varietat de tasques i entorns dins de TAMP, ni el mostreig
ni l’optimització són superiors en tots els escenaris. Per combinar les fortaleses de tots
dos enfocaments, hem dissenyat meta-algorismes per a TAMP, algorismes adaptatius que
seleccionen automàticament quins algorismes i càlculs utilitzar i com descompondre millor
cada problema per trobar una solució més ràpidament.

Una tercera direcció prometedora per millorar els algoritmes TAMP és aprendre de solu-
cions prèvies a problemes similars. A la tercera part, combinem arquitectures d’aprenentatge
profund amb raonament basat en models per accelerar els càlculs dins dels nostres algo-
rismes. Específicament, apliquem aquests models en la detecció de quines restriccions
físiques són inviables, i en l’optimització no lineal, centrant-nos en la generalització, pre-
cisió, temps d’execució i eficiència de dades.

En el nucli de les nostres contribucions hi ha una representació refinada, desglossada i frag-
mentada dels problemes d’optimització de trajectòries dins de TAMP. Aquesta estructura no
només facilita una planificació més eficient, millor anàlisi de les restriccions geomètriques
i meta-algorismes, sinó que també proporciona una millor generalització en arquitectures
neuronals.

xiii

Chapter1
Introduction

Autonomy of robotic systems Nowadays, robots are ubiquitous in industrial settings such
as factories and warehouses, where they perform repetitive tasks in controlled environ-
ments. However, robotic systems still lack the robustness and autonomy needed to become
useful companions in our daily lives, helping humans with construction sites, working in
hazardous environments, household chores, and elderly care.

Traditionally, robots have operated in very controlled environments, such as factories for
car manufacturing. At the most basic level of autonomy, a human worker would manually
provide a reference trajectory for the robot, and the robot’s task would be to follow this
trajectory in a repetitive manner. At a second level of autonomy, the human operator
defines a desired goal configuration for the robot, and the robot has to find a collision-free
path to reach the goal.

Roughly, these two levels of autonomy correspond, respectively, to two distinct fields in
robotics: optimal control [Siciliano et al., 2008] and motion planning [LaValle, 2006]. They
both address fundamental problems in robotics, with open and interesting questions from
both research and engineering perspectives. However, optimal control and motion plan-
ning require precise task specifications and cannot handle complex and long-term tasks
independently.

Thus, the degree of autonomy of these systems is insufficient for deploying robots in foresee-
able future applications such as construction sites or household environments. As human
users, it is not convenient to specify short-term goals or reference trajectories. Instead, we
need robots to operate at a higher degree of autonomy, where we provide only a high-level
goal such as “clean the table”, “stack all the blocks” or “build a chair” and the robot solve
the task.

These types of problems, which require long-term planning of a sequence of physical
interactions with the environment, considering geometric and physical constraints, can be

1

1. Introduction

formalized as Task and Motion Planning (TAMP) [Garrett et al., 2021]. Together with other
fundamental challenges in robotics, such as perception [Thrun et al., 2005] and dexterous
manipulation [Billard and Kragic, 2019, Bicchi and Kumar, 2000], TAMP will play a central
role in our quest for the autonomy of robotic systems.

Algorithmic improvements, better formulations, and a deeper understanding of Task and
Motion Planning are fundamental for future robotics systems. In this thesis, we aim to im-
prove the performance of TAMP algorithms from three complementary perspectives: more
efficient solvers that integrate classical planning with trajectory optimization, meta-solvers
that automatically select how to solve and decompose the problems, and learning-based
methods to accelerate expensive computations and reuse solutions to similar problems.

Task and Motion Planning In Task and Motion Planning (TAMP), robots must plan a
sequence of feasible motions and interactions with other objects to achieve a desired state
of the environment, considering the geometric and physical constraints of the world (e.g.,
[Toussaint, 2015, Kaelbling and Lozano-Pérez, 2011, Dantam et al., 2018]1). It combines
aspects of both task planning and motion planning and usually assumes a deterministic
transition model and perfect state information.

TAMP problems can be solved by planning at two levels of abstraction: a high-level task plan
(also known as an action skeleton or sequence of high-level actions) and low-level motion.
In the high-level task, the robots decide with which objects to interact, in which order,
and what type of interactions, e.g., grasping, pushing, or throwing. Such information
can be encoded using discrete variables, resulting in a discrete planning problem [Fikes
and Nilsson, 1971, Bonet and Geffner, 2001]. Additionally, the robot must plan low-level
motion that fulfills the geometric and physical constraints of the real world, such as collision
avoidance, stability, reachability, and friction [Toussaint et al., 2018]. Notably, in real-world
applications, there are strong interdependencies between the high-level task and the low-
level motion. This prevents a naive decomposition of the problem using directly off-the-shelf
task planners and motion planners, making TAMP problems notoriously difficult to solve.

TAMP includes a broad class of problems, including multimodal motion planning, sequen-
tial manipulation planning, rearrangement planning, and hybrid task planning. Consider,
for example, the problem of building a tower of blocks with two robots, as shown in Fig. 1.1.
Fig. 1.2 shows some key configurations of the solution to this TAMP problem. Here, consid-
ering reachability and collision avoidance constraints is fundamental because two blocks
are obstructing the placement of the tower, and each robot can only reach a subset of the
blocks.

Similarly, in the TAMP problem in Fig. 1.3, two robots have to put a ball on top of a tower of
blocks. The ball is out of reach, but a stick can be used to push it to the center of the table.

1A comprehensive discussion of related work in TAMP is provided later in Chapter 2.

2

Initial state Goal

Build tower of blocks
blue-gray-red-green
in the center of the table.

Figure 1.1.: Task and Motion Planning – Example 1.

Figure 1.2.: A solution to the Task and Motion Planning problem of Fig. 1.1.

Fig. 1.4 shows some key configurations of the solution to this TAMP problem. Remarkably,
in both examples, the human user has only provided the abstract goal, and all the motions
and interactions with the environment are computed autonomously by the robots.

Why are TAMP problems difficult to solve? First, the complexity of the problem grows expo-
nentially with the number of objects and robots in the environment, often denoted with
the term “curse of dimensionality”. Second, generating collision-free and feasible robot
trajectories is a challenging problem on its own because it requires motion planning and
optimization in continuous spaces with geometric and physical nonlinear constraints, such
as collision avoidance, grasping, and stability.

Finally, TAMP requires joint reasoning about motion planning and task planning, often with
strong dependencies and interactions between the two levels. Geometric constraints and
physical constraints have an influence on whether a task plan is valid, and how the robots
execute each intermediate step of the plan is relevant for achieving the final high-level goal.

3

1. Introduction

Initial state Goal

Build tower of blocks
light green - dark green
with blue ball on top.

Figure 1.3.: Task and Motion Planning – Example 2.

Beyond its potential applications, Task and Motion Planning is a very interesting research
field because it requires planning at two levels of abstraction while accounting for strong
dependencies and without easy decompositions. Such problems are usually easy for hu-
mans to solve, as humans excel at reasoning at different levels of abstraction and combining
long-term planning with motion planning. However, they are very challenging to formalize
mathematically and to solve with computers.

From a robotics perspective, designing TAMP algorithms requires understanding and com-
bining state-of-the-art planning algorithms, such as classical planning, trajectory optimiza-
tion, and motion planning. Using off-the-shelf solvers is usually not sufficient, as solving
TAMP problems requires new interfaces and functionality to achieve a tighter integration.

Throughout this thesis, we assume perfect knowledge of the state of the environment where
robots operate, as is typically done in the TAMP literature. Thus, our robots will know the
positions and the geometry of the objects they want to manipulate. While this is a general
limitation for deploying robots in the real world today–because we cannot assume this
perfect information in uncontrolled environments–TAMP with perfect state knowledge is
still an open and unsolved research problem.

1.1. Sampling and Optimization Methods for Task and Motion
Planning

Algorithms for TAMP problems are complex systems that combine and tightly integrate
different algorithmic components from task planning and motion planning. Traditionally,
there have been two alternative and competing approaches to solving these problems, which

4

1.1. Sampling and Optimization Methods for Task and Motion Planning

Figure 1.4.: A solution to the Task and Motion Planning problem in Fig. 1.3.

differ in the tools used to compute the motion of the robots and in how the discrete and
continuous search are interleaved.

Sample-based approaches to TAMP (e.g., [Garrett et al., 2021, Srivastava et al., 2014]s)
incrementally discretize the continuous search space and attempt to compute a solution
incrementally, step by step, using constraint sampling methods and sample-based motion
planning [Kavraki et al., 1996, LaValle and Kuffner, 2001]. For example, to generate the
robot motion that picks up and moves one object, these methods would first generate a
valid grasp and a valid placement of the object, then a robot configuration for the pick
and for the place using inverse kinematics, and finally a trajectory. Because the motion is
computed incrementally in several steps using conditionally constrained sampling, these
methods cannot efficiently account for joint constraints in the motion, e.g., when very precise
grasps or placements are required to enable subsequent actions.

On the other hand, optimization-based approaches to TAMP first compute candidate task
plans [Toussaint, 2015, Toussaint et al., 2018] and then attempt to find a motion plan for the
full task plan using trajectory optimization [Bertsekas, 1997, Betts, 1998, Nocedal and Wright,
2006]. This accounts for all the constraints of the motion jointly, instead of sequentially, as
in the case of sample-based approaches. There is often a huge number of potential task
plans that fail because of the geometric constraints. Thus, a significant challenge in these
approaches is to design a good interface between the task and the motion so that candidate
plans are informed about geometric infeasibility.

Our work builds on Logic Geometric Programming (LGP) [Toussaint, 2015], a prominent
optimization-based formulation of TAMP, which represents the problem as a joint op-

5

1. Introduction

timization over discrete and continuous variables, where different high-level task plans
imply different nonlinear constraints for the robot motion.

In the first section of this thesis, we present two new optimization-based solvers for TAMP
that combine and refine tools and techniques from trajectory optimization, conflict-based
search, and classical planning. Our key contributions are two new bidirectional interfaces
between the discrete and continuous levels, which allow informing task planners about
geometric infeasibility, resulting in very efficient TAMP solvers.

Our first solver, Diverse Planning for LGP, interfaces trajectory optimization with state-of-
the-art classical planning by detecting and encoding infeasible prefixes of the task plan
(Chapter 4).

However, encoding prefix infeasibility is not enough to solve problems with multiple robots
and objects, as the number of candidate high-level plans to evaluate grows exponentially
fast.

In our second solver, Factored-NLP Planner, we combine classical planning and optimization
in a more precise and effective way, leveraging a novel factored representation of LGP prob-
lems. Our framework automatically detects which nonlinear constraints fail and encodes
this information back into the task planner. This results in a very efficient interface, solving
TAMP with several robots, objects, and intricate geometric constraints in just a few seconds
(Chapter 5).

Meta-solvers: An adaptive combination of sampling and optimization TAMP encompasses
a wide range of problem settings, including varying numbers of robots and objects, as well
as different goals, geometries, and physical constraints. Given this diversity and complexity,
it is unrealistic to expect that a single algorithm can efficiently solve all TAMP problems.

Despite recent advances in both sample-based and optimization-based approaches to TAMP,
the performance of each solver is limited by the capabilities of the underlying methods
used to generate the motion. When a problem can be easily decomposed into simpler,
independent subproblems – where the motion of the robot can be computed indepen-
dently – sample-based approaches are very efficient. In contrast, when the motion of the
robot is highly constrained, and there are long-term dependencies between the actions,
optimization-based approaches are more efficient.

Minor variations in the task or the environment can make a TAMP problem more suitable for
one type of solver or the other. Therefore, designing a TAMP solver that can efficiently solve
all problems while strictly adhering to either the optimization or sample-based paradigm
is impossible.

The second part of this thesis investigates how to design meta-solvers for Task and Motion
Planning. Intuitively, a meta-solver is a solver that can choose which type of solver to use

6

1.2. Accelerating Model-Based Solvers with Deep Learning

based on the problem at hand [Russell and Wefald, 1991]. In our project, the meta-solver
will actively reason about how to best decompose the problem and which algorithm and
strategy to use to compute the robot motions, two vital questions that are fixed by design
in current TAMP solvers.

We first investigate the problem of finding the keyframe configurations for a fixed high-level
task plan (Chapter 6). This is a fundamental subproblem of TAMP that already exposes the
trade-off between choosing either sampling or joint nonlinear optimization. Our algorithm
will learn how to best decompose the problem to maximize the number of solutions found
in a fixed computational time. The discovered optimal strategies are adaptive hybrid combi-
nations of optimization and sampling, which outperform user-predefined decompositions
as well as full joint optimization.

In a subsequent project, we tackle the comprehensive TAMP problem. To bridge the gap
between optimization and sample-based approaches, we first define a novel computational
state that extends the traditional notion of discrete-continuous state with free states subject
to constraints. Based on this formulation, we introduce a TAMP meta-solver, a hybrid solver
that automatically uses a flexible combination of optimization and sampling methods to
solve for the high-level task plan and the low-level motion in a TAMP problem (Chapter 7).

1.2. Accelerating Model-Based Solvers with Deep Learning
The traditional approach to solving a Task and Motion Planning (TAMP) problem in the
real world can be described in three stages: First, we create a model of the world using our
knowledge of physics and geometry. Second, we use this model, together with a TAMP
solver, to compute the best robot actions. Third, we apply these actions in the real-world
system.

Triggered by the success of Deep Learning [Goodfellow et al., 2016] in other fields, such
as computer vision [Krizhevsky et al., 2012, Mildenhall et al., 2021] and natural language
processing [Hochreiter and Schmidhuber, 1997, Vaswani et al., 2017], there has been an
explosion of data-driven approaches that leverage data rather than first-principles physics
models to solve robotic problems.

However, in the context of TAMP, where long-term planning is required, abstract and
physics models are very valuable as they enable scaling and generalization to different types
of problems and scenarios. Instead of replacing world models and planning algorithms,
we investigate how to combine data-driven approaches with model-based approaches to
improve the efficiency of TAMP solvers. Specifically, we are interested in using a dataset
of solutions to similar problems to accelerate planning algorithms, making expensive com-
putations more tractable and enabling real-time solutions to combinatorial and large-scale
optimization problems.

7

1. Introduction

The combination of learning and model-based approaches has received a lot of attention in
recent years, as it can potentially combine the best of both worlds, but it presents several
challenges. A fundamental open research question is how to represent the problem and the
solutions to achieve strong generalization and accuracy. Useful neural models should be
applicable in a wide range of new, unseen problems, instead of just memorizing the training
data as if it were a table of problems and solutions.

In this thesis, we investigate how to use deep learning to accelerate TAMP solvers, focusing
on two computationally expensive operations in our TAMP solvers: solving nonlinear opti-
mization programs and determining which constraints are infeasible in an overconstrained
optimization problem.

First, we propose deep generative models [Goodfellow et al., 2014, Kingma and Welling,
2013] to provide a good initial warm start for nonlinear optimization in very challenging
optimization problems (Chapter 8). In the second project, we train a graph-based classifier
[Kipf and Welling, 2016] using the structure of the nonlinear program to directly predict
which constraints are infeasible (Chapter 9). In both projects, we present a unique contri-
bution toward understanding how to leverage structural knowledge of the TAMP problem
for creating more accurate and generalizable neural models.

1.3. The Factored Structure of Task and Motion Planning
A deep study and analysis of the factored structure of Task and Motion Planning problems
are at the core of all our contributions.

Using the underlying factored structure of large problems has been key in other robotics
fields. For example, in Simultaneous Localization and Mapping (SLAM), the factored
structure is used to solve sparse optimization problems faster to estimate the position of a
robot while creating a map of the environment [Dellaert et al., 2017]. In classical planning,
the factorization of the state space using a set of variables is key to designing domain-
independent heuristics that guide heuristic search algorithms [Bonet and Geffner, 2001].

Similarly, a correct and precise formulation of TAMP problems can unveil significant struc-
ture that can be exploited to solve the problem more efficiently. First, we have different
objects and robots in the scene, which implies a natural factorization of the continuous
configuration space and the high-level discrete representation. Second, there is a temporal
structure that arises from the temporal dimension of a planning problem. Furthermore,
even when the required motions are long and involve multiple robots and objects, each
constraint and physical interaction usually involves a few objects at a time.

In this thesis, we use a refined, factored representation of the trajectory optimization prob-
lems within TAMP, which exposes the local dependencies between variables and constraints.

8

1.4. Reading Guide and Statement of Contributions

For instance, when a robot picks up an object, the new interaction constrains the motion
of the object with respect to the gripper but does not create additional constraints between
other objects in the environment. Additionally, we show how the nonlinear constraints of
the motion are defined by the high-level task plan. For instance, a pushing interaction will
imply very different constraints on the robot’s and object’s motion than a pick, place, or
handover action.

A factored representation of TAMP is required to identify which are the building blocks
of all the TAMP problems, understand how they are connected, and unveil how these
combinations of local structures can compose a very rich set of TAMP problems. For
instance, consider again the two TAMP problems of Figs. 1.1 and 1.3, with solutions shown
in Figs. 1.2 and 1.4. They both share the same local structure, with multiple objects and
robots, pick and place interactions (with additional pushing interactions in the second
example). What information can we reuse from one problem to the other? In what sense
can we use the solution of one problem to inform the other? How can we decompose the
problem? How can we share information about different high-level task plans in the same
scenario, or even across problems?

During this thesis, we will incrementally tackle all these questions by using a factored
representation of the trajectory optimization problems within TAMP. In our new TAMP
solvers, we introduce a refined factored Logic Geometric Program formulation, which,
combined with technical algorithmic contributions, can be used to detect why task plans
fail and share this information back into the high-level task planner (Chapter 5).

In the second part of the thesis, the factored structure is used to reason about good problem
decompositions and sequences of small sampling operations inside a meta-solver (Chap-
ter 6).

Finally, the factored structure is also fundamental in our learning-based approaches (Chap-
ters 8 and 9). Together with suitable neural architectures, the factored structure introduces a
strong inductive and relational bias in our models, reducing the sample complexity during
training, improving accuracy, and enabling generalization to new and diverse problems
and environments.

1.4. Reading Guide and Statement of Contributions
Chapter 2 introduces the main concepts and tools used as a foundation throughout the
thesis: nonlinear programming, classical planning, and the Logic Geometric Programming
formulation of Task and Motion Planning, together with a literature review of solvers and
problem formulations for TAMP.

9

1. Introduction

Ch. 4 - Diverse Task Planning for Solving Logic
Geometric Programs (3)

Ch. 5 - Conflict-Based Search in Factored Logic
Geometric Programs (4)

Ch. 6 - Learning Optimal Sampling Sequences
for Robotic Manipulation (1)

Ch. 7 - Towards Meta-Solvers for Task and Mo-
tion Planning (6)

Ch. 8 - Deep Generative Constraint Sam-
pling (2)

Ch. 9 - Learning Feasibility of Factored Nonlin-
ear Programs (5)

Part I - Integrated Planning and Optimization for
Task and Motion Planning

Part II - Meta-Solvers: Adaptive Combination of
Sampling and Optimization Methods

Part III - Accelerated Task and Motion Planning with
Learning Methods

Subsets of Infea-
sible Constraints

Factored Structure

Sampling Keyframes

Figure 1.5.: Reading Guide – A graphical overview.

Chapter 3 provides an intuitive explanation of the factored structure inherent in trajectory
optimization problems within TAMP, illustrated with multiple examples.

The core of the thesis is divided into six chapters, organized into three parts: 1 - Integrated
Planning and Optimization for Task and Motion Planning, 2 - Meta-Solvers: Adaptive
Combination of Sampling and Optimization Methods, and 3 - Accelerated Task and Motion
Planning with Learning Methods. In the conclusion (Chapter 10), we summarize the
contributions and discuss open challenges in the field of TAMP.

Despite this clear organization, several interconnections and synergies emerge between
different chapters, offering a comprehensive view of TAMP from multiple perspectives. A
graphical overview is provided in Fig. 1.5. Chapters are represented with white rectangles
and are connected with other chapters based on the shared contributions, methodologies,

10

1.4. Reading Guide and Statement of Contributions

or problem settings they address, depicted with distinct color-coded boxes. For instance,
the analysis of the factored structure of the trajectory optimization problems, displayed in
red, is a central theme in four out of the six chapters.

Each chapter essentially reflects a different research project. The chronological order of these
projects, marked with a gray number, illuminates the progression of my research journey. It
aims to show how diverse perspectives and fields can converge on novel ideas and valuable
contributions, often requiring one to revisit similar methodologies and problem settings
with new tools and insights.

Part I - Integrated Planning and Optimization for Task and Motion Planning

– In Chapter 4, Diverse Task Planning for Solving Logic Geometric Programs, we present
a systematic interface between discrete task planning and trajectory optimization for
solving TAMP. Our solver detects geometric conflicts in the form of prefixes of task
plans that are infeasible and blocks these prefixes in the task planner. This chapter is
based on the publication [Ortiz-Haro et al., 2022c],

– Ortiz-Haro, J. , Karpas, E., Toussaint, M., and Katz, M. (2022). Conflict-Directed
Diverse Planning for Logic-Geometric Programming. In Proceedings of the
International Conference on Automated Planning and Scheduling (Vol. 32, pp.
279-287).

– In Chapter 5, Conflict-Based Search in Factored Logic Geometric Programs, we present a
new factored formulation of TAMP and a second TAMP solver that uses this factored
representation as a bidirectional interface between task and motion. Here, the solver
can detect and encode infeasible subsets of nonlinear constraints, resulting in a more
efficient interface. This chapter is based on the publication [Ortiz-Haro et al., 2022b],

– Ortiz-Haro, J. , Karpas, E., Katz, M., and Toussaint, M. (2022). A Conflict-Driven
Interface Between Symbolic Planning and Nonlinear Constraint Solving. IEEE
Robotics and Automation Letters, 7(4), (pp. 10518-10525).

Part II - Meta-Solvers: Adaptive Combination of Sampling and Optimization Methods

– In Chapter 6, Learning Optimal Sampling Sequences for Robotic Manipulation, we present
a meta-algorithm to solve a key subproblem of TAMP: finding the keyframe configura-
tions for a fixed task plan. The meta-algorithm combines sampling and optimization
to minimize the computational time required to generate diverse solutions. This work
is based on the publication [Ortiz-Haro et al., 2021],

– Ortiz-Haro, J. , Hartmann, V. N., Oguz, O. S., and Toussaint, M. (2021). Learning
Efficient Constraint Graph Sampling for Robotic Sequential Manipulation. IEEE
International Conference on Robotics and Automation (ICRA) (pp. 4606-4612).

11

1. Introduction

– In Chapter 7, Towards Meta-Solvers for Task and Motion Planning, we present a meta-
solver2, for the comprehensive TAMP problem. This solver combines search on the
task and motion levels and determines the best way to decompose the TAMP prob-
lem, deciding automatically whether it is better to use constrained sampling or joint
nonlinear optimization.

Part III - Accelerated Task and Motion Planning with Learning Methods

– In Chapter 8, Deep Generative Constraint Sampling, we present a new method to generate
samples on constraint manifolds using a combination of deep generative models
and nonlinear optimization. We apply our framework to compute faster keyframe
configurations of a fixed task plan. This work is based on the publication [Ortiz-Haro
et al., 2022a],

– Ortiz-Haro, J. , Ha, J. S., Driess, D., and Toussaint, M. (2022). Structured Deep
Generative Models for Sampling on Constraint Manifolds in Sequential Manip-
ulation. In Conference on Robot Learning (pp. 213-223). PMLR.

– In Chapter 9, Learning Feasibility of Factored Nonlinear Programs, we present a graph-
neural model that predicts which constraints of a factored nonlinear program are
infeasible. In the context of TAMP, our model can generalize to different scenes,
longer manipulation sequences, more robots and objects than the example data seen
during training. This chapter is based on the publication [Ortiz-Haro et al., 2023],

– Ortiz-Haro, J. , Ha, J. S., Driess, D., Karpas, E., and Toussaint, M. (2023). Learning
Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning.
IEEE International Conference on Robotics and Automation (ICRA) (pp. 3729-
3735).

Several of my publications as a Ph.D. student at TU Berlin have been excluded from this
thesis to maintain a focus on the core contributions to Task and Motion Planning. The
complete list of publications during my Ph.D. is shown in Appendix A.

2We plan to extend and submit the content of this chapter to a robotics or planning conference, for instance, IROS,
ICRA, or ICAPS. This research has been conducted in collaboration with Erez Karpas and Marc Toussaint.

12

Chapter2
Background

This chapter introduces the background material necessary to understand the scientific con-
tributions that will be presented later. Our work builds on Logic Geometric Programming,
an optimization-based formulation of Task and Motion Planning (TAMP), which combines
nonlinear programming and classical planning.

Thus, we start with a brief presentation of nonlinear programs, including a short discussion
on how to solve them and examples in the context of robotics (Section 2.1). Then, we present
classical planning, introducing the factored formulation and solvers that we will use later in
the thesis. We also present the Blocksworld domain, which provides a high-level abstraction
of the TAMP problem, ignoring the geometric constraints (Section 2.2).

In Section 2.3, we present the Logic Geometric Programming formulation together with the
state-of-the-art solver for this formulation. We conclude the background chapter with a
literature review on Task and Motion Planning (Section 2.4).

2.1. Nonlinear Programs in Robotics
Nonlinear programs A nonlinear program (NLP) is an optimization problem of the form:

min
𝑥∈R𝑛

𝑓 (𝑥) , (2.1a)

s.t. ℎ(𝑥) = 0 , (2.1b)
𝑔(𝑥) ≤ 0 , (2.1c)

where 𝑥 ∈ R𝑛 is an 𝑛-dimensional continuous vector variable, 𝑓 : R𝑛 → R is the cost
function, ℎ : R𝑛 → R𝑙 are the equality constraints, and 𝑔 : R𝑛 → R𝑚 are the inequality

13

2. Background

constraints. All functions 𝑓 , ℎ, and 𝑔 are smooth and differentiable. The abbreviation s.t.
stands for “subject to”.

The optimal solution minimizes the objective function while fulfilling the equality and
inequality constraints. It must fulfill the first-order necessary conditions of optimality,
known as the Karush–Kuhn–Tucker (KKT) conditions. KKT conditions state that if a point
𝑥∗ ∈ R𝑛 is a local minimum, then there exist vectors �∗ ∈ R𝑙 and �∗ ∈ R𝑚 , called Lagrange
multipliers or dual variables, such that the following conditions hold:

∇ 𝑓 (𝑥∗) + 𝐷ℎ(𝑥∗)𝑇�∗ + 𝐷𝑔(𝑥∗)𝑇�∗ = 0 , (2.2a)
ℎ(𝑥∗) = 0 , (2.2b)
𝑔(𝑥∗) ≤ 0 , (2.2c)

�∗ ≥ 0 , (2.2d)

𝑔(𝑥∗)𝑇� = 0 , (2.2e)

where ∇ 𝑓 (𝑥∗) is the gradient of 𝑓 , and 𝐷ℎ(𝑥∗) and 𝐷𝑔(𝑥∗) are the Jacobians of ℎ and 𝑔

evaluated at 𝑥∗. The KKT conditions are sufficient conditions for optimality if the NLP is
a convex optimization problem, with 𝑓 convex, ℎ being linear, and 𝑔 being convex (under
some regularity conditions; we refer to [Nocedal and Wright, 2006] for more technical and
precise definitions and proofs).

If a vector 𝑥feas ∈ R𝑛 fulfills the constraints, i.e., ℎ(𝑥feas) = 0, 𝑔(𝑥feas) ≤ 0, it is called a feasible
solution. The set of feasible solutions of (2.1) defines a nonlinear manifold

ℳ = {𝑥 ∈ R𝑛 | ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0} . (2.3)

An NLP is infeasible if there are no feasible solutions. Throughout this thesis, we often
omit the cost term and focus on the feasibility problem,

find 𝑥 ∈ R𝑛 , (2.4a)
s.t. ℎ(𝑥) = 0 , (2.4b)

𝑔(𝑥) ≤ 0 . (2.4c)

For simplicity, we will refer to both (2.1) and (2.4) as NLPs. In fact, a practical and robust
way to generate one feasible solution in (2.4) is to choose a reference value 𝑥ref ∈ R𝑛 and
solve the NLP:

min
𝑥∈R𝑛
| |𝑥 − 𝑥ref | |2 (2.5a)

s.t. ℎ(𝑥) = 0 , (2.5b)
𝑔(𝑥) ≤ 0 . (2.5c)

14

2.1. Nonlinear Programs in Robotics

Methods for solving a nonlinear program Nonlinear programs do not have a closed-form
solution, and they are usually solved with iterative methods. An extensive review is
available in [Nocedal and Wright, 2006].

Unconstrained Optimization: First, let’s consider the unconstrained optimization problem,

min
𝑥∈R𝑛

𝑓 (𝑥) . (2.6)

We can optimize this function with a broad family of local iterative algorithms that generate
a sequence 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , starting from an initial value 𝑥0. The step direction 𝑑𝑘 can be
computed using the gradient ∇ 𝑓 (𝑥𝑘) and the Hessian ∇2 𝑓 (𝑥𝑘) (second-order derivatives of
the function 𝑓 at the current point 𝑥𝑘).

For instance, in gradient descent, 𝑑𝑘 is given by −∇ 𝑓 (𝑥𝑘). Using second-order information,
𝑑𝑘 is given by −(∇2 𝑓 (𝑥𝑘))−1∇ 𝑓 (𝑥𝑘) in the Newton method, or −(∇2 𝑓 (𝑥𝑘) + 𝛽𝑘 𝐼𝑑)−1∇ 𝑓 (𝑥𝑘),
with 𝛽𝑘 > 0, for a regularized Newton method. Quasi-Newton methods use −𝐵−1∇ 𝑓 (𝑥𝑘),
where 𝐵 approximates the Hessian.

The step size 𝛼𝑘 is either fixed or chosen adaptively to ensure that the function decreases
enough at each iteration, using a line search algorithm, e.g., a backtracking line search that
finds the step size that fulfills the Armĳo or Wolfe Conditions [Nocedal and Wright, 2006].

In general, the sequence 𝑥0 , 𝑥1 , . . . , 𝑥𝑘 converges to a stationary point, i.e., a point where
the gradient is zero. Note that some precautions must be taken when computing the step
direction and step size, see [Nocedal and Wright, 2006].

However, the point of convergence can be a local minimum, instead of a global minimum
𝑥∗ = min𝑥 𝑓 (𝑥). When the function 𝑓 is convex, a local minimum is guaranteed to be the
global minimum, but otherwise, this does not hold in the general non-convex case. Thus,
the choice of the initial guess 𝑥0 is very important, as it can lead to different local minima.

The convergence rate is linear for gradient descent and quadratic for the Newton method.
The computational complexity of each iteration, with respect to the size of the vector
variable problem (i.e., 𝑛), is linear in gradient descent and cubic in the Newton method,
which requires solving a linear system of dimension 𝑛 in each iteration.

In robotics problems, Newton and Quasi-Newton methods converge much faster than
gradient descent methods and are often preferred. Gradient descent performs poorly when
the cost function has different curvatures in different directions (a very large disparity
between the largest and smallest eigenvalues of the Hessian matrix).

Constrained Optimization: The most popular algorithms to solve (2.1) are the Augmented
Lagrangian algorithm, sequential quadratic programming, interior point methods, and
penalty methods. Similar to the unconstrained case, they are iterative methods that generate
a sequence of points 𝑥𝑘 that converges to a stationary point.

15

2. Background

All these methods try to find a point that fulfills the first-order necessary conditions for
optimality (2.2). Similar to the unconstrained case, these methods perform only local
optimization. In general, convergence to the optimum is guaranteed only if the NLP is a
convex optimization problem with both a convex objective function and a convex feasible
set.

In practice, in the nonlinear case, these methods might converge to a feasible local optimal
point or to an infeasible point that does not fulfill the constraints, depending on the initial
guess and the nonlinearity of the constraints.

Throughout this thesis, we solve NLPs using the Augmented Lagrangian algorithm. The
Augmented Lagrangian algorithm solves (2.1) by solving a sequence of unconstrained
optimizations. Starting from an initial guess (𝑥0 ,�0 , �0), we update the primal and the dual
variables in an iterative two-step process. At iteration 𝑘, primal variables are updated by
solving the unconstrained optimization problem (starting from the initial guess 𝑥𝑘−1)

min
𝑥
ℒ𝐴(𝑥,�𝑘−1 , �𝑘−1 , 𝜌), (2.7)

where ℒ𝐴 is the Augmented Lagrangian, defined as:

ℒ𝐴(𝑥,�, �, 𝜌) = 𝑓 (𝑥)+�𝑇 ℎ(𝑥) + �𝑇 𝑔(𝑥)+

𝜌

2

𝑙∑
𝑗=1

ℎ 𝑗(𝑥)2 +
𝜌

2

𝑚∑
𝑗=1
[𝑔𝑗(𝑥) ≥ 0 ∨ �𝑗 > 0]𝑔𝑗(𝑥)2 ,

(2.8)

with the penalty parameter 𝜌 > 0 and where the subscript 𝑗, e.g., ℎ 𝑗(𝑥), indicates the 𝑗-
th component of a vector. Using this formulation (slight variations of the term for the
inequalities are also possible), an inequality constraint acts as an equality constraint if it is
not fulfilled or its dual variable is strictly positive.

After the primal variables 𝑥𝑘 have been updated, the dual variables are updated with:

�𝑘 ← �𝑘−1 + 𝜌ℎ(𝑥𝑘) , �𝑘 ← max(0, �𝑘−1 + 𝜌𝑔(𝑥𝑘)). (2.9)

Additionally, it is often convenient to increase the penalty parameter 𝜌 if the constraints
are not fulfilled to a desired amount. Detailed analyses of convergence and practical
implementations are provided, e.g., in [Nocedal and Wright, 2006, Andreani et al., 2008,
Conn et al., 2013].

16

2.1. Nonlinear Programs in Robotics

Examples of nonlinear programs in robotics Nonlinear programs are used in robotics
for a wide range of applications, including motion planning, optimal control, and inverse
kinematics.

The variables in an NLP represent the configuration of the robot. For instance, the joint
angles of a 7-DOF manipulator can be represented with a vector variable 𝑥 ∈ R7. A
finite-dimensional vector can also represent a trajectory. For example, the trajectory of a
manipulator 𝑞 : [0, 1] → R7 can be represented by a cubic polynomial 𝑞(𝑡) = 𝑎+𝑏𝑡+𝑐𝑡2+𝑑𝑡3,
resulting in the variable in the NLP 𝑥 = [𝑎, 𝑏, 𝑐, 𝑑] ∈ R4·7.

The nonlinear constraints in the NLP can model various constraints, including collision
avoidance, kinematic, grasping, and contact constraints. The cost function can represent
objectives such as energy, time, and control effort. We now present two examples of NLPs
in robotics relevant to this thesis.

Single Keyframe Optimization: Suppose we have a 7-DOF manipulator, and our objective
is to generate a configuration that picks up a box using a top grasp along the x-direction
(assuming, for simplicity, that the box is aligned with the world axis). This problem can be
formulated as the following NLP, where the variable 𝑥 ∈ R7 represents the joint angles of
the robot.

min
𝑥∈R7

| |𝑥 − 𝑥ref | |2 , (2.10a)

s.t. 𝑝𝑧(𝑥) − 𝑏𝑧 = 𝑏/2 , (2.10b)
𝑎/2 ≤ 𝑝𝑥(𝑥) − 𝑏𝑥 ≤ 𝑎/2 , (2.10c)
𝑅(𝑥) = 𝐼𝑑 , (2.10d)
𝑝𝑦(𝑥) − 𝑏𝑦 = 0 , (2.10e)
𝑞lb ≤ 𝑥 ≤ 𝑞ub , (2.10f)
sdf(𝑃𝑗(𝑥), env) ≥ 0 𝑗 = 1, . . . , 𝐽 (2.10g)
sdf(𝑃𝑗(𝑥), block) ≥ 0 𝑗 = 1, . . . , 𝐽 (2.10h)

where 𝑝(𝑥) : R7 → R3 is the position of the end-effector as a function of the joint values,
and 𝑅(𝑥) is the rotation matrix representing the orientation of the end-effector. Here, we
assume that a successful grasp requires the end-effector to have the same orientation as
the box, thus 𝑅(𝑥) = 𝐼𝑑, but more complex grasp constraints are used later throughout the
thesis. Vectors 𝑞lb and 𝑞ub are the lower and upper bounds of the joint angles. The position
of the block is given by (𝑏𝑥 , 𝑏𝑦 , 𝑏𝑧), with 𝑎 and 𝑏 denoting its length and height. 𝑥ref is a
reference configuration for the robot.

𝑃𝑗(𝑥) represents the collision shape of part 𝑗 of the robot, the position and orientation of
which depend on the joint values 𝑥. The robot has 𝐽 collision parts (often, one per link).
The signed-distance function, denoted with sdf, is a function that returns the minimum

17

2. Background

Figure 2.1.: Solution to the NLP in Eq. (2.10).

distance between the collision shape and either the environment (env) or the block (block).
If the objects are in collision, sdf returns a negative value corresponding to the penetration
distance. A solution to this NLP is depicted in Fig. 2.1.

Trajectory Optimization: In the second example, our goal is to generate a trajectory for
grasping the object starting from the configuration 𝑞0. We choose to parameterize the
trajectory using 𝑁 waypoints. Our variable is now 𝑥 = [𝑞1 , . . . , 𝑞𝑁] ∈ R7·𝑁 , where 𝑞𝑖 ∈ R7

is the joint values at waypoint 𝑖. The optimization problem is:

min
[𝑞1 ,...,𝑞𝑁]∈R7·𝑁

| |𝑞1 − 𝑞0 | |2 +
𝑁∑
𝑖=2
| |𝑞𝑖 − 2𝑞𝑖−1 + 𝑞𝑖−2 | |2 , (2.11a)

s.t. 𝑝𝑧(𝑞𝑁) − 𝑏𝑧 = 𝑏/2 , (2.11b)
𝑎/2 ≤ 𝑝𝑥(𝑞𝑁) − 𝑏𝑥 ≤ 𝑎/2 , (2.11c)
𝑅(𝑞𝑁) = 𝐼𝑑 , (2.11d)
𝑝𝑦(𝑞𝑁) − 𝑏𝑦 = 0 , (2.11e)
𝑞lb ≤ 𝑞𝑖 ≤ 𝑞ub , 𝑖 = 1, . . . , 𝑁 (2.11f)
sdf(𝑃𝑗(𝑞𝑖), env) ≥ 0 , 𝑖 = 1, . . . , 𝑁 𝑗 = 1, . . . , 𝐽 (2.11g)
sdf(𝑃𝑗(𝑞𝑖), block) ≥ 0 . 𝑖 = 1, . . . , 𝑁 𝑗 = 1, . . . , 𝐽 (2.11h)

The chosen cost function minimizes the sum of squared accelerations, computed using
second-order backward finite differences. The constraints on the last configuration 𝑞𝑁 are
the same as in the previous NLP (2.10). Joint limits and collisions are assessed at each
waypoint. In this example, we only evaluate collisions at each waypoint, but collisions
could also be assessed at intermediate trajectory points, which can be determined through
linear interpolation. The solution is shown in Fig. 2.2.

18

2.2. Classical Planning

Figure 2.2.: Solution to the NLP in Eq. (2.11) using 10 waypoints (𝑁 = 10). Each image
shows a waypoint of the trajectory (from top left to bottom right).

2.2. Classical Planning
Classical planning involves finding a sequence of actions to achieve a goal from an initial
state. It assumes that states and actions are discrete and finite, the state is fully observable,
and actions have known deterministic effects.

A classical planning model Π = ⟨𝒮 , 𝑠0 ,𝒮𝐺 ,𝒜⟩ comprises:

– A finite and discrete set of states 𝒮, representing the state space.

– An initial state 𝑠0 ∈ 𝒮.

– A set of goal states 𝒮𝐺 ⊆ 𝒮.

– A set of actions 𝒜. The subset of actions applicable in state 𝑠 is given by 𝒜(𝑠) ⊆ 𝒜,
and executing action 𝑎 in state 𝑠 results in the successor state 𝑠′ = succ(𝑠, 𝑎).

A feasible solution to a planning problem is a sequence 𝑠0 , 𝑎1 , 𝑠1 , . . . , 𝑎𝐾 , 𝑠𝐾 that transforms
the initial state 𝑠0 into a goal state 𝑠𝐾 ∈ 𝒮𝐺, where 𝑎𝑘 ∈ 𝒜(𝑠𝑘−1) and 𝑠𝑘 = succ(𝑠𝑘−1 , 𝑎𝑘).
The optimal solution minimizes the number of actions (assuming each action has a uniform
cost).

In large problems, explicitly enumerating the state space is not feasible. In such cases, we
use factored representations, in which states are factored into variables. A state is now
represented as a complete value assignment to a set of variables with finite and discrete
domains. The set of applicable actions 𝒜(𝑠) and the successor function succ(𝑠, 𝑎) are now
defined in terms of conditions and effects on these variables.

In this thesis, we use the SAS+ encoding of the classical planning problem, as referenced by
[Bäckström and Nebel, 1995]. This provides a more compact and intuitive representation for

19

2. Background

TAMP problems than the original STRIPS formulation [Fikes and Nilsson, 1971]. A notable
difference is that in SAS+, variables have a discrete, finite domain, whereas in STRIPS, they
are boolean.

A factored classical planning task is a tuple Π = ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ where:

– 𝒱 is a set of state variables. Each state variable 𝑣 ∈ 𝒱 has a finite domain 𝒟(𝑣). A
fact is a pair ⟨𝑣, 𝜗⟩ of a variable 𝑣 ∈ 𝒱 and its value 𝜗 ∈ 𝒟(𝑣).

– An assignment to all the variables in𝒱 is called a state 𝑠. The set of all such states is
denoted as 𝒮. A partial state 𝑝 is a value assignment to only a subset of the variables
in𝒱. We view a partial state 𝑝 as a set of facts (i.e., a set of variable-value pairs) and
use 𝑝[𝑣] to denote the value of variable 𝑣 in 𝑝 (i.e., 𝑝[𝑣] = 𝜗 if and only if ⟨𝑣, 𝜗⟩ ∈ 𝑝).
For any partial state 𝑝, 𝒱(𝑝) ⊆ 𝒱 indicates the state variables instantiated by 𝑝. A
partial state 𝑝 is consistent with a state 𝑠 if 𝑝 ⊆ 𝑠.

– 𝒜 is a set of actions. Each action 𝑎 is a pair of partial states called preconditions
pre(𝑎) and effects eff (𝑎). An action 𝑎 is valid in a state 𝑠 if pre(𝑎) ⊆ 𝑠. The set of all
applicable actions in 𝑠 is given by𝒜(𝑠). Applying 𝑎 on state 𝑠 results in the next state
𝑠′ = succ(𝑠, 𝑎), where the value of variables 𝑣 ∈ 𝒱(eff (𝑎)) has changed to eff (𝑎)[𝑣].

– An initial state 𝑠0.

– A partial state 𝑔 that defines the goal.

Similarly to the unstructured case, an action sequence 𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩ is a valid plan if
each action is applicable in the previous state (𝑠𝑘 = succ(𝑠𝑘−1 , 𝑎𝑘), starting from 𝑠0), and the
final state satisfies the goal, that is 𝑔 ⊆ 𝑠𝐾 .

The Planning Domain Definition Language (PDDL) [McDermott et al., 1998] has become a
standard for defining planning problems, as it is the language for the International Planning
Competitions (IPC) (e.g., [Long and Fox, 2003], [Coles et al., 2012a]). In PDDL, a planning
problem is defined as a pair comprising a planning domain and a problem instance. The
domain defines a class of problems by specifying the set of valid action schemas and
predicates in this domain. The problem instance defines the objects, on which predicates
are evaluated, the initial state, and the goal state. For solving a PDDL problem, classical
planners first transform the action schemas and objects into a propositional representation
like STRIPS or SAS+.

The classical planning community has developed domain-independent planners that lever-
age the factored representation of the planning problem. A prominent approach is heuristic
search, where the distance to the goal is estimated by solving a relaxed (simplified) version
of the original problem. The relaxed problems, often based on the so-called delete relax-
ation, can be solved efficiently in polynomial time on the number of variables (instead of
exponential) [Bonet and Geffner, 2001, Helmert, 2006, Hoffmann and Nebel, 2001].

20

2.2. Classical Planning

A B C B

A

C

Figure 2.3.: Start and goal states in the Blocksworld problem. PDDL files are shown in
Fig. 2.5.

A B C

A

B C

A

B C

A

B

C

A

B

C

Figure 2.4.: Solution to the Blocksworld problem in Fig. 2.3.

Alternative approaches for solving classical planning problems include reductions to other
formalisms such as Boolean Satisfiability (SAT) [Biere et al., 2009] and Constraint Satisfaction
Problems (CSP) [Rossi et al., 2006].

Blocksworld Blocksworld is a classical planning problem that involves a set of blocks on
a table, where the goal is to build a particular stack of blocks.

The Blocksworld PDDL domain file is shown in Fig. 2.5a. An example problem instance is
shown in Fig. 2.5b (file) and Fig. 2.3 (graphical visualization). The solution to this problem
is shown in Fig. 2.4.

Blocksworld is a high-level planning problem that only deals with logical relationships
between blocks. On the other hand, Task and Motion Planning (TAMP) in robotics goes
beyond abstract reasoning to include physical constraints. TAMP considers both the high-
level discrete actions (like picking up an object) and the low-level continuous motions
required to perform those tasks (such as path planning, reachability, and collision avoid-
ance). This makes TAMP much more complex and connected to the real physical world,
whereas Blocksworld remains a more abstract and simplified problem.

The success of classical planning in solving large-scale problems stems from the analysis of
the factored structure inherent in most planning problems. This factorization, exemplified
by the Blocksworld domain, is also readily available in Task and Motion Planning (TAMP)
problems and will be exploited throughout this thesis (see Chapter 3 for a first introduction).

21

2. Background

(define (domain blocksworld)
(: predicates (on ?x ?y) (ontable ?x) (clear ?x)

(handempty) (holding ?x))
(: action pick -up
:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))
(: action put -down
:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x)

(handempty) (ontable ?x)))
(: action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y) (not (= ?x ?y)))
:effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)

(handempty) (on ?x ?y)))
(: action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty) (not (= ?x ?y)))
:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))
)

(a) Domain.

(define (problem blocksworld -problem)
(: domain blocksworld)
(: objects a b c)
(:init (handempty) (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c))
(:goal (and (clear c) (ontable b) (on c a) (on a b)))

)

(b) Example of a problem instance.

Figure 2.5.: Blocksworld in PDDL.

22

2.3. Logic Geometric Programming

2.3. Logic Geometric Programming
Can we formulate TAMP as a continuous optimization problem? Logic Geometric Programming
(LGP) is an optimization-based formulation of Task and Motion Planning (TAMP). To
motivate the LGP formulation, we first show that Task and Motion Planning can be written
as a single continuous-time optimization program, which can later be discretized into
a nonlinear program. However, proceeding without introducing a discrete abstraction
renders the problem unsolvable.

Let 𝒳 = R𝑛 × 𝑆𝐸(3)𝑚 be the configuration space of an 𝑛-dimensional robot and 𝑚 rigid
objects, initially at pose 𝑥0 ∈ 𝒳. The trajectory of the robot and the movable objects can
be represented with a continuous function 𝑥(𝑡) : [0, 𝑇] → 𝒳, with 𝑇 being the terminal
time. A Task and Motion Planning problem is then formulated as a continuous trajectory
optimization with,

min
𝑥(𝑡),𝑇

∫ 𝑇

0
𝑓path (�̄�(𝑡))𝑑𝑡 , (2.12a)

s.t. 𝑥(0) = 𝑥0 , (2.12b)
ℎgoal (𝑥(𝑇)) = 0, 𝑔goal (𝑥(𝑇)) ≤ 0, (2.12c)
ℎpath (�̄�(𝑡)) = 0, 𝑔path (�̄�(𝑡)) ≤ 0, ∀𝑡 ∈ [0, 𝑇] (2.12d)

where �̄�(𝑡) = (𝑥(𝑡), ¤𝑥(𝑡), ¥𝑥(𝑡)) includes the position, velocity, and acceleration of the tra-
jectory. Path constraints ℎpath and 𝑔path represent the physical constraints of the physical
world. For instance, objects can only move when grasped or pushed by the robot, and
objects and robots should not collide with the environment. Goal constraints {ℎ, 𝑔}goal
impose constraints on the last state and are used to represent the desired final state, such
as stacking objects in a tower. The cost function 𝑓path typically represents control effort,
smoothness, or energy.

Converting the continuous-time optimization to an NLP requires a finite-dimensional rep-
resentation of the trajectory. For instance, this could be achieved using a finite sequence of
waypoints, and checking the path constraints on a finite set of points (e.g., the waypoints
themselves), similarly to the example in Eq. (2.11).

Unfortunately, this NLP formulation is unsolvable, even for short-term horizons and few
objects in the scene. The two main challenges are as follows:

1. The non-convexity of the constraints used to model all possible physics interactions
(e.g., using complementarity constraints [Posa et al., 2014]) leads to disconnected and
non-convex feasible sets.

2. The lack of meaningful gradients, which also stems from the generic nature of the
constraints. If the initial guess for the trajectory does not interact with movable objects,

23

2. Background

(a) (b) (c) (d)

Figure 2.6.: Logic Geometric Programming. (a,b) Apes and crows solving physical puzzles
that require precise manipulation and long-term planning of physical interac-
tions. (c) In robotics, LGP can be used to model tool-use, and diverse physical
interactions, such as grasping, pushing, and throwing. (d) The LGP framework
and the original Multi-Bound Tree Search algorithm have been extended to
solve problems in the construction domain [Hartmann et al., 2022]. Images are
reproduced from [Toussaint et al., 2018, Hartmann et al., 2022].

the derivatives of the path and goal constraints either lack relevant information for
long-term planning, or only greedily move the robot towards every movable object.

Therefore, a local optimization method will get trapped in an infeasible local optimum and
fail to find a feasible solution to (2.12). In fact, we observe that general complex behavior
that requires reasoning about interacting with multiple objects cannot be computed using
only local optimization methods.

High-level and low-level abstractions in TAMP: Introducing a high-level abstraction that defines
the sequence of interactions between the robot and the objects is essential to solving the
TAMP problem.

In fact, the problem can be formulated with two levels of abstraction: low-level motion
planning and high-level task planning. The high-level task planning can be formulated as a
classical planning task, introducing a set of discrete states and actions. But now, in addition
to planning in a discrete domain, choices on the discrete level impose nonlinear constraints
on the continuous trajectory, with a different sequence of high-level actions implying a
different set of nonlinear constraints on the trajectory.

Therefore, instead of a single universal physics constraint, we now operate with a set of
more approachable nonlinear constraints based on each discrete state and action. Though
these constraints remain nonlinear, they tend to be smooth and informative, and typically
guide the optimizer towards feasible solutions, as demonstrated by the diverse set of TAMP
problems solved using the LGP formulation [Toussaint and Lopes, 2017, Toussaint et al.,
2018] (Fig. 2.6).

24

2.3. Logic Geometric Programming

Logic Geometric Program Formally, consider a continuous configuration space 𝒳 (e.g.,
R𝑛 × 𝑆𝐸(3)𝑚 for an 𝑛-dimensional robot and 𝑚 rigid objects), a finite set of discrete states
𝒮, and a finite set of discrete actions 𝒜. Let 𝑥0 ∈ 𝒳 be the initial configuration, 𝑠0 ∈ 𝒮 be
the initial discrete state, and 𝒮𝑔 ⊆ 𝒮 be the set of discrete goal states. A Logic Geometric
Program is a combined optimization problem over the continuous trajectory 𝑥(𝑡) : [0, 𝐾𝑇] →
𝒳 and the sequence of discrete states and actions 𝑠0 , 𝑎1 , 𝑠1 , . . . , 𝑎𝐾 , 𝑠𝐾 ,

min
𝑥(𝑡),𝑎1:𝐾 ,𝑠1:𝐾

∑
𝑘

∫ 𝑡𝑘+1

𝑡𝑘

𝑓path (�̄�(𝑡), 𝑠𝑘) 𝑑𝑡 , (2.13a)

s.t. 𝑥(0) = 𝑥0 , (2.13b)
ℎpath (�̄�(𝑡), 𝑠𝑘) = 0 , 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 0, . . . , 𝐾 − 1 (2.13c)
𝑔path (�̄�(𝑡), 𝑠𝑘) ≤ 0 , 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 0, . . . , 𝐾 − 1 (2.13d)
ℎswitch (�̄� (𝑡𝑘) , 𝑠𝑘−1 , 𝑠𝑘) = 0 , 𝑘 = 1, . . . , 𝐾 (2.13e)
𝑔switch (�̄� (𝑡𝑘) , 𝑠𝑘−1 , 𝑠𝑘) ≤ 0 , 𝑘 = 1, . . . , 𝐾 (2.13f)
𝑠𝑘 = succ (𝑠𝑘−1 , 𝑎𝑘) , 𝑘 = 1, . . . , 𝐾 (2.13g)
𝑠𝑘 ∈ 𝒮 , 𝑎𝑘 ∈ 𝒜 , 𝑘 = 1, . . . , 𝐾 (2.13h)
𝑠𝐾 ∈ 𝒮𝑔 . (2.13i)

Here, �̄�(𝑡) = (𝑥(𝑡), ¤𝑥(𝑡), ¥𝑥(𝑡)), 𝑡𝑘 = 𝑇𝑘 is the start time of step 𝑘, and 𝑠1:𝐾 , 𝑎1:𝐾 are short
notations for ⟨𝑠1 , . . . , 𝑠𝐾⟩ and ⟨𝑎1 , . . . , 𝑎𝐾⟩. The functions (ℎ, 𝑔)path, (ℎ, 𝑔)switch, and 𝑓path are
smooth and differentiable in the continuous configuration when conditioned on the discrete
states. The discrete function succ(𝑠, 𝑎) indicates the successor discrete state after applying
action 𝑎 to state 𝑠. The length of the sequences 𝐾 ∈ N is also subject to optimization. We
remark that the discrete component of an LGP corresponds to a classical planning problem
Section 2.2.

The sequence 𝑎1:𝐾 is called a task plan, action-skeleton, or sequence of high-level actions
in the TAMP literature. Throughout this thesis, we use the term task plan. The continuous
motion 𝑥(𝑡) is now divided into 𝐾 phases of duration 𝑇 ∈ R (for simplicity, we assume
𝑇 is fixed, but it could also be optimized), with different nonlinear constraints on the
configuration for each phase, based on 𝑠𝑘 (or the pair 𝑠𝑘−1 , 𝑠𝑘 for switch constraints).

The key difference from the unstructured problem (2.12) is that the nonlinear functions
(𝑓 , 𝑔, ℎ) are now conditioned on the discrete state 𝑠𝑘 and provide informative gradients for
local optimization, as opposed to using a unique universal constraint based on complemen-
tarity or differentiable contact models. This means that the constraints ℎswitch and 𝑔switch
will be different functions of �̄� depending on which object is grasped, pushed, or placed, as
indicated by the discrete states.

25

2. Background

Continuous space and discrete space in LGP Before delving into solving the Logic Geo-
metric Program (2.13), we will clarify the meanings of the continuous space, discrete space,
and the nonlinear constraints in the context of TAMP.

Discrete Level: The discrete states 𝑠 ∈ 𝒮 in LGP are used to encode the structure of the
kinematic tree, which models which objects are in contact with each other. For instance,
an object can be attached either to the gripper or to the table. This information is discrete
because it only contains a parent’s name or identifier, but it does not consider the continuous
relative pose between them. Apart from special discrete symbols to represent the initial
position of the objects, LGP does not introduce additional discrete symbols to represent
the continuous state of the world, such as concrete values of the positions of the objects,
grasps, or robot configurations, as done in other sample-based TAMP formulations (e.g.,
[Garrett et al., 2020]). Equivalently, we can think of the discrete states as modeling the
discrete contact states of the world, specifying which objects are in contact with others.
From the perspective of multimodal motion planning, discrete states in an LGP represent
the different motion modes.

Discrete actions 𝑎 ∈ 𝒜 are the high-level actions of the task plan, such as pick, place, push,
which change the kinematic structure or contact status. Discrete actions do not include any
continuous parametrization. For instance, a discrete action pick object A with Q from table
does not model the continuous grasp, e.g., the relative transformation between the gripper
and the object.

Continuous Level: The continuous configuration 𝒳 = R𝑛 × 𝑆𝐸(3)𝑚 represents the config-
uration of the robot (joint values) and the objects (position and orientation). Collision
avoidance, reachability, grasping, pushing, and placement constraints are modeled using
the nonlinear constraints inside (ℎ, 𝑔)(path,switch), which vary in each motion step depending
on the discrete decisions.

For instance, concerning grasping constraints, we use geometric constraints, such as aligning
the end-effector with a particular axis of a box or ensuring that a point near the end-effector’s
palm touches the object’s surface while maintaining the correct orientation. In practice, for
boxes, balls, and sticks, this typically implies the existence of a stable grasp, which is then
represented as a constant relative transformation until placement. For pushing constraints,
we introduce additional decision variables for the forces and point-of-attack between the
two interacting objects. Motion and forces are then constrained by physics equations as
outlined in [Toussaint et al., 2020].

26

2.3. Logic Geometric Programming

How to solve a Logic Geometric Program? If we fix the task plan ⟨𝑎1 , . . . , 𝑎𝐾⟩ in a LGP, the
resulting subproblem, denoted as Trajectory-NLP(⟨𝑎1 , . . . , 𝑎𝐾⟩), is a continuous optimiza-
tion problem:

min
𝑥(𝑡)

∑
𝑘

∫ 𝑡𝑘+1

𝑡𝑘

𝑓path(�̄�(𝑡), 𝑠𝑘)𝑑𝑡 , (2.14a)

s.t.
𝑥(0) = 𝑥0 , (2.14b)
ℎpath (�̄�(𝑡), 𝑠𝑘) = 0, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 0, . . . , 𝐾 − 1, (2.14c)
𝑔path (�̄�(𝑡), 𝑠𝑘) ≤ 0, 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1], 𝑘 = 0, . . . , 𝐾 − 1, (2.14d)
ℎswitch (�̄� (𝑡𝑘) , 𝑠𝑘−1 , 𝑠𝑘) = 0, 𝑘 = 1, . . . , 𝐾, (2.14e)
𝑔switch (�̄� (𝑡𝑘) , 𝑠𝑘−1 , 𝑠𝑘) ≤ 0, 𝑘 = 1, . . . , 𝐾. (2.14f)

where ⟨𝑠0 , . . . , 𝑠𝐾⟩ is uniquely defined by ⟨𝑎1 , . . . , 𝑎𝐾⟩ and the fixed 𝑠0 (using the discrete
successor function). This optimization can be converted directly into an NLP by using a
finite-dimensional representation of the trajectory, and thus, we refer to (2.14) directly as
an NLP. Throughout this thesis, we represent the trajectory with a finite set of waypoints,
similar to the example NLP in Eq. (2.11) of Section 2.1.

A task plan ⟨𝑎1 , . . . , 𝑎𝐾⟩ is said to be geometrically infeasible when (2.14) is infeasible, i.e., it
has no feasible solution. This frequently occurs in TAMP, where many candidate high-level
plans define constraints for the motion that can never be satisfied. For instance, the task
plan ⟨pick object A with robot Q from A_init⟩ fails if the object is too far away or if there is an
obstacle blocking the grasp. A task plan ⟨pick object A with robot Q from A_init, place object A
with robot Q on red table⟩ can fail if the table is out of reach or other objects are already on
the table. These two examples of motion failures are shown in Fig. 2.7.

We can define relaxed versions of Trajectory-NLP(⟨𝑎1 , . . . , 𝑎𝐾⟩) that can be used to quickly
test the feasibility while being computationally simpler. Relaxed problems remove con-
straints from the original problem and act as a lower bound. Thus, if the relaxed problem
is infeasible, the original problem is also infeasible.

The Keyframes-NLP (keyframes or sequence bound) optimizes only a single configuration per
phase instead of a continuous trajectory.

The optimization variables are {𝑥𝑘 ≡ 𝑥(𝑡𝑘) | 𝑘 = 1, . . . , 𝐾}, which are optimized jointly, ac-
counting for their interdependencies but without considering the continuous path between
them. That is, we only evaluate the constraints at the beginning and end of each phase. This
sequence of discrete configurations is called keyframes (the term we use in this thesis) or
mode-switches and is very informative in manipulation planning, as keyframes are usually
the more constrained configurations and capture with high accuracy whether a high-level

27

2. Background

(a) Trajectory-NLP for the task plan ⟨pick object A with robot Q from A_init⟩ is infeasible.

(b) Trajectory-NLP for the task plan ⟨pick object A with robot Q from A_init, place object A with
robot Q on red table⟩ is infeasible.

Figure 2.7.: Two examples of infeasible Trajectory-NLPs for two task plans in two example
environments. The yellow circle highlights why the motion is infeasible. In (a),
the block suddenly “jumps” from the start configuration to the gripper. In (b),
the block “jumps” from the gripper to the red table.

task plan is geometrically feasible. The Keyframes-NLP(⟨𝑎1 , . . . , 𝑎𝐾⟩) is:

min
𝑥1 ,...,𝑥𝐾

∑
𝑘

𝑓0(𝑥𝑘) + 𝑓1(𝑥𝑘−1 , 𝑥𝑘) , (2.15a)

s.t. ℎ̃path(𝑥𝑘 , 𝑠𝑘) = 0, 𝑘 = 1, . . . , 𝐾 (2.15b)
�̃�path(𝑥𝑘 , 𝑠𝑘) ≤ 0, 𝑘 = 1, . . . , 𝐾 (2.15c)

ℎ̃switch(𝑥𝑘 , 𝑥𝑘+1 , 𝑠𝑘 , 𝑠𝑘+1) = 0, 𝑘 = 0, . . . , 𝐾 − 1 (2.15d)
�̃�switch(𝑥𝑘 , 𝑥𝑘+1 , 𝑠𝑘 , 𝑠𝑘+1) ≤ 0, 𝑘 = 0, . . . , 𝐾 − 1 (2.15e)

where (ℎ̃ , �̃�)(path,switch) model the path and switch constraints but are evaluated only on the
keyframe configurations instead of the full trajectory.

28

2.3. Logic Geometric Programming

Importantly, in the Keyframes-NLP, we optimize the full manipulation sequence jointly.
This means that we can discover, for instance, grasp locations that are good for both the
pick and place keyframe, picking in places that allow for a handover, or placing an object
close to the other robot for later manipulation.

In practice, before solving (2.14), it is recommended to always solve first the Keyframes-NLP
(2.15), and use its solution to warm-start the trajectory in (2.14).

A looser relaxation is to optimize a single keyframe for each phase independently, without
considering the interdependencies between them. The Pose-NLP(⟨𝑎1 , . . . , 𝑎𝐾⟩) (pose bound)
is a set of 𝑘 = 1, . . . , 𝐾 independent optimization problems, one for each keyframe 𝑥𝑘 ,

𝑘 = 1, . . . , 𝐾 min
𝑥𝑘

𝑓0(𝑥𝑘 , 𝑠𝑘) , (2.16a)

s.t. 𝑥(0) = 𝑥0 , (2.16b)

ℎ̃path(𝑥𝑘 , 𝑠𝑘) = 0 , (2.16c)
�̃�path(𝑥𝑘 , 𝑠𝑘) ≤ 0 . (2.16d)

This is the most computationally efficient relaxation to test the feasibility of a sequence
of actions but is also the least informative, as it does not consider the interdependencies
between the different motion steps.

2.3.1. Multi-Bound Tree Search

Multi-Bound Tree Search (MBTS) [Toussaint and Lopes, 2017] is a state-of-the-art approach
to solve an LGP (2.13). The discrete state and action space of the LGP formulation is explored
with a search tree starting from 𝑠0, where each branch represents a different sequence of
discrete actions. The leaf nodes 𝑠𝑔 ∈ 𝑆𝑔 are solutions to the discrete planning problem
and are potential candidates for a solution to the LGP problem. Each node can be tested
for feasibility by solving the continuous optimization problem induced by the sequence of
actions from the root to the current node. Therefore, to find a solution to the LGP problem,
we have to identify a leaf node 𝑠𝑔 ∈ 𝑆𝑔 and find a feasible solution to its corresponding
Trajectory-NLP(𝑎1:𝐾) (which might be infeasible for most candidate plans).

However, trying to solve the trajectory optimization is expensive, and the number of can-
didate NLPs is generally too high. To alleviate this issue, MBTS solves relaxed versions of
(2.13) incrementally. The feasibility of each relaxed problem is a necessary condition for the
feasibility of the Trajectory-NLP, i.e., these act as lower bounds while being computationally
faster. Specifically, the two bounds are the keyframes bound (Keyframes-NLP (2.15)) and the
pose bound (Pose-NLP (2.16)), which consider only a subset of variables and constraints of
the full trajectory optimization problem.

29

2. Background

The search is organized around four queues using a simple round-robin policy to process the
next element of each queue. There is a queue for intermediate discrete states (explored in a
breadth-first search order), two queues for computing the relaxations using the Keyframes-
NLP and the Pose-NLP, and a queue for solving the Trajectory-NLP.

If a node in the tree reaches the goal, it is promoted to the relaxation queues. If a node
fulfills the two relaxations, it is moved to the trajectory optimization queue. Additionally,
we can also use the relaxations to prune the search tree. If the pose, keyframes, or trajectory
NLP of a candidate or intermediate node fails, we can identify the prefix that is infeasible
and utilize it to prune sub-branches in the search tree.

2.4. Related Work in Task and Motion Planning
Solvers for Task and Motion Planning can be categorized based on two complementary
criteria [Garrett et al., 2021]. First, based on how motion planning and task planning
are combined, we distinguish between 1) continuous-first (where partial motions are first
computed, then combined into a full TAMP solution), 2) interleaved (with simultaneous
search at both the continuous and discrete levels), and 3) discrete-first (where candidate
high-level task plans are computed first).

The second criterion focuses on the methods used to compute the motions. These are
primarily 1) predefined discretization, 2) sampling, or 3) optimization methods. In practice,
the two criteria are closely interconnected; solvers using optimization typically employ a
discrete-first search, while most sampling methods use continuous-first or interleaved search.

Prominent examples of sample-based methods are PDDLStream [Garrett et al., 2020] and
TAMP in the Now [Kaelbling and Lozano-Pérez, 2011]. TAMP in the Now adopts a hierar-
chical and interleaved search approach between the discrete and continuous levels, while
PDDLStream integrates constrained samplers for generating the continuous motion (e.g.,
grasps, collision-free paths, and inverse kinematic solutions) within PDDL-like planning.
On the other hand, the study in [Ferrer-Mestres et al., 2017] showcases a pre-discretized
continuous-first approach, where a set of valid configurations is integrated into task plan-
ning through precompilation.

Some sampling-based TAMP solvers reason explicitly about geometric conflicts. For exam-
ple, a set of predefined predicates such as “is reachable” is used in [Srivastava et al., 2014] to
combine a black-box task planner with a motion planner. The constraint-based approach in
[Dantam et al., 2016] incorporates information about geometric infeasibility by blocking the
full task plan or, in special cases, a pair of a discrete (partial) state and an action. Geometric
infeasibility can also be evaluated efficiently using linear constraint propagation [Lagriffoul
et al., 2014].

30

2.4. Related Work in Task and Motion Planning

In this work, we focus on optimization-based formulations of TAMP, where Logic Geomet-
ric Programming stands as a leading general formulation [Toussaint, 2015, Toussaint et al.,
2018]. Optimization-based solvers leverage nonlinear optimization to compute motions that
satisfy all geometric and physical constraints, while taking into account the interdependen-
cies in the motion. A state-of-the-art general solver for LGP is the Multi-bound Tree Search
[Toussaint and Lopes, 2017], which combines discrete search with relaxed optimization
problems to efficiently evaluate geometric feasibility. Other optimization-based methods,
e.g., [Migimatsu and Bohg, 2020, Zhao et al., 2021, Zimmermann et al., 2020, Hadfield-
Menell et al., 2016], address more specific TAMP settings (e.g., rearrangement) or a TAMP
subproblem (e.g., only motion planning).

Task and Motion Planning can also be formulated as multimodal motion planning. In-
deed, the difference between TAMP and multimodal motion planning is mainly a naming
convention used by different authors. In practice, the concepts of motion-modes and mode-
transitions in multimodal motion planning correspond to the high-level abstraction in TAMP
problems. The naming convention traditionally highlights a slight difference in target appli-
cations, with TAMP focusing more on planning long manipulation sequences with multiple
objects, while multimodal planning emphasizes more on problems with shorter sequences
with more challenging motion planning.

Multi-Modal-PRM, proposed in the seminal work [Hauser and Latombe, 2010], builds a
probabilistic roadmap (PRM, [Kavraki et al., 1996]) in different motion modes and connects
these modes by sampling configurations belonging to two modes simultaneously, known
as mode-switch configurations. The original multimodal framework can be extended to
problems with an infinite number of modes [Hauser and Ng-Thow-Hing, 2011], asymptotic
optimal planning [Vega-Brown and Roy, 2020], and heuristics to bias the search towards
useful mode transitions [Kingston et al., 2020].

Problems similar to TAMP or multimodal motion planning also appear under a third distinct
name in robotics literature: manipulation planning, which typically assumes contact modes
using only a stable grasp (i.e., prehensile manipulation).

Similar to multimodal motion planning, most methods extend the tools of sample-based
motion planning to manipulation problems. For instance, manipulation planning can be
formulated as a search over a sequence of transit paths (where the robot moves freely)
and transfer paths (where the robot moves while holding an object), using probabilistic
roadmaps [Siméon et al., 2004]. More recently, an asymptotically optimal manipulation
planner has been proposed in [Schmitt et al., 2017], and the Manipulation-RRT [Lamiraux
and Mirabel, 2021] extends the classical RRT algorithm ([LaValle and Kuffner, 2001]) to
plan across different contact and manipulation modes. Some algorithms focus only on
specific settings within manipulation planning, such as rearrangement planning [Ota, 2004,
Krontiris and Bekris, 2016, Huang et al., 2019], or navigation among movable obstacles
[Stilman et al., 2007].

31

2. Background

The multimodal nature of Task and Motion Planning (TAMP) arises from creating and
breaking contacts with the environment. Such problems also appear in legged locomotion,
where mixed-integer formulations can be used to optimize foot placement, gait, and joint
movement [Deits and Tedrake, 2014]. To avoid the explicit combinatorial search, an alter-
native approach is to use local optimization methods, which, in turn, raise concerns about
local optima and feasibility. Differentiable contact models [Todorov, 2011], contact invari-
ant optimization [Mordatch et al., 2012], nonlinear programming [Posa et al., 2014], and
convex relaxations [Song et al., 2021] have been used to optimize trajectories and contacts
simultaneously for locomotion.

From a different perspective, and within a different research community, Task and Motion
Planning can be formulated as a classical planning problem with additional numerical
variables. Classical AI planners have been extended to support planning with numerical
constraints on action preconditions (e.g., Metric-FF [Koehler, 1998]), and recent versions
of the Planning Domain Definition Language (PDDL) include temporal planning with
numerical variables [Fox and Long, 2006, Piotrowski et al., 2016, Scala et al., 2016].

For instance, the COLIN planner [Coles et al., 2012b] includes continuous linear changes
of numerical variables (e.g., fixed velocities) and encodes the temporal and state evolu-
tion constraints implied by a sequence of actions as a linear program. The Scotty planner
[Fernández-González et al., 2018] adds support for general convex constraints, combining
discrete search with convex optimization, and the planner in [Haslum et al., 2018] extends
classical planning with general state constraints. However, these general planning formula-
tions have not been used to tackle general TAMP problems, where the dimensionality and
complexity of the continuous space pose significant challenges and often require tools from
motion planning and nonlinear trajectory optimization.

32

Chapter3
Factored Structure of Task and Motion

Planning

In this chapter, we analyze the factored structure that appears in Task and Motion Plan-
ning (TAMP). Specifically, we study the factorization of the nonlinear trajectory optimiza-
tion problem for a fixed task plan, denoted as Trajectory-NLP(⟨𝑎1 , . . . , 𝑎𝐾⟩) in Section 2.3
(Eq. (2.14)).

A similar analysis of the factorization of the TAMP problem is foundational in modern
sample-based TAMP solvers, where it is used to define effective conditional sampling
operations [Garrett et al., 2018, Garrett et al., 2021] and to propagate information about
feasibility [Lagriffoul et al., 2014]. In contrast, we analyze the factored structure from the
perspective of optimization-based solvers for TAMP, providing complementary insights
and ideas.

One of the contributions of this thesis is the formalization of TAMP problems using our
novel planning formulation, “Planning with Nonlinear Transition Constraints”, which offers
a factored view on LGPs. While the formal definition, details, and comprehensive analysis
will be presented later in Chapter 5, this chapter provides an approachable, intuitive view of
the inherent structure that appears naturally in trajectory optimization for TAMP problems.

The chapter is organized as follows: First, we introduce the factored nonlinear program for-
mulation. Second, we discuss the factored optimization problem for the Pick and Place task
plan, which will later be used as a building block in more sophisticated manipulation tasks.
Third, we examine more complex examples that showcase the main benefits of our factored
representation, namely, the temporal structure, sparse factorization, and composition.

33

3. Factored Structure of Task and Motion Planning

3.1. Factored-NLP – Definition and Properties
A factored nonlinear program (Factored-NLP) is a nonlinear program (2.1) where the vector
variable is factored into a set of smaller vector variables, and the cost function, the equality,
and inequality constraints are also decomposed into a set of smaller cost terms and constraint
functions, each depending on a small subset of the variables.

Given a set of 𝑁 vector variables 𝑋 = {𝑥1 , . . . , 𝑥𝑁 } with 𝑥𝑖 ∈ R𝑛𝑖 , a set of nonlinear
cost functions 𝐹 = { 𝑓1 , . . . , 𝑓𝐵} with 𝑓𝑏 : R𝑚𝑏 → R, and a set of vector-valued constraint
functions Φ = {𝜙1 , . . . , 𝜙𝐴} with 𝜙𝑎 : R𝑚𝑎 → R𝑚′𝑎 that include both equality and inequality
constraints, a Factored-NLP is the optimization problem,

min
𝑥1 ,...,𝑥𝑁

∑
𝑓𝑏∈𝐹

𝑓𝑏(𝑋𝑏) , (3.1a)

s.t. 𝑥𝑖 ∈ R𝑛𝑖 , 𝑖 = 1, . . . , 𝑁 (3.1b)
𝜙𝑎(𝑋𝑎) {≤,=} 0 , ∀𝜙𝑎 ∈ Φ (3.1c)

where each cost function 𝑓𝑏 and constraint 𝜙𝑎 may depend on different subsets of variables
𝑋𝑏 ⊆ 𝑋, 𝑋𝑎 ⊆ 𝑋 (e.g., 𝑋𝑎 = {𝑥1 , 𝑥3} for some 𝑎). The notation {≤,=} indicates that a
constraint can be either an equality or an inequality constraint, which are handled differently
by nonlinear solvers.

In this thesis, we often use Factored-NLPs to reason about the infeasibility of optimization
problems and to generate one or more feasible solutions that fulfill the constraints. Thus,
we consider Factored-NLPs without a cost term, resulting in the feasibility problem,

find 𝑥𝑖 ∈ R𝑛𝑖 , 𝑖 = 1, . . . , 𝑁 (3.2a)
s.t. 𝜙𝑎(𝑋𝑎) {≤,=} 0, ∀𝜙𝑎 ∈ Φ. (3.2b)

A Factored-NLP is a structured representation similar to factor graphs [Frey et al., 1997,
Dellaert et al., 2017], constraint systems [Rossi et al., 2006], and graphical models [Koller
and Friedman, 2009]. It can be represented with a bipartite graph with two types of vertices,
variables and constraints, where edges represent the dependency relations between them.

We can represent a Factored-NLP with variables 𝑋𝐺 = {𝑥1 , . . . , 𝑥𝑁 } and constraints Φ𝐺 =

{𝜙1 , . . . , 𝜙𝐴} as a graph 𝐺 = (𝑉𝐺 , 𝐸𝐺)with vertices 𝑉𝐺 and edges 𝐸𝐺,

𝑉𝐺 = 𝑋𝐺 ∪Φ𝐺 , (3.3a)
𝐸𝐺 = {(𝑥𝑖 , 𝜙𝑎) | constraint 𝜙𝑎 ∈ Φ𝐺 depends on variable 𝑥𝑖 ∈ 𝑋𝐺}. (3.3b)

34

3.1. Factored-NLP – Definition and Properties

Subproblems of Factored-NLPs are defined as subgraphs of the original graph 𝐺. Namely,
a subset of variables and constraints is a subgraph 𝑀 ⊆ 𝐺 of the original Factored-NLP.
Likewise, a superset of variables and constraints is a supergraph �̃� ⊇ 𝐺.

A Factored-NLP 𝐺 is feasible, ℱ (𝐺) = 1, if the optimization problem (3.1) has a solution
(i.e., if there exists a value assignment for all variables that fulfills all constraints),

ℱ (𝐺) = 1 iff ∃ 𝑥𝑖 ∈ R𝑛𝑖 𝑖 = 1, . . . , 𝑁 , such that 𝜙𝑎(𝑋𝑎) {≤,=} 0, ∀𝜙𝑎 ∈ Φ . (3.4)

Otherwise, it is infeasible, with ℱ (𝐺) = 0. Note that if a Factored-NLP 𝐺 is feasible, then
all its subgraphs 𝑀 ⊆ 𝐺 are feasible. Conversely, if a Factored-NLP is infeasible, then all its
supergraphs �̃� ⊇ 𝐺 are infeasible.

Similar to unstructured NLPs (Section 2.1), one can solve a Factored-NLP using joint non-
linear optimization of all variables and constraints. If desired, the structured representation
can be used for faster matrix factorization and multiplication using sparse matrices. In fact,
leveraging the temporal structure of motion planning, we can reduce the computational
complexity of second-order methods (Newton/Gauss-Newton) from cubic to linear in the
temporal dimension.

Additionally, since we now have a set of variables and constraints, we can solve for any
subset of them, ignoring the other variables and constraints. In particular, we can attempt
to solve the complete problem by computing subsets of variables sequentially in any order,
conditioned on the variables that have already been determined, as later discussed in
Chapter 6.

35

3. Factored Structure of Task and Motion Planning

(a) Environment with a robot 𝑄, an ob-
ject 𝐵, and a red table.

pick object B with robot Q from B_init,
place object B with robot Q on red table.

(b) Task plan.

(c) Trajectory optimization problem. The top row illustrates the keyframes, and the bottom
row shows the trajectory between keyframes. The initial configuration is 𝑞0 for the robot
and 𝑏0 for the object. Variables 𝑞1 and 𝑏1 are the robot and object configurations in the
pick keyframe, and 𝑞2 and 𝑏2 are the configurations in the place keyframe. Variables
𝜏
𝑞

{1,2} and 𝜏𝑏{1,2} indicate the trajectories of the robot and the object between keyframes.
The images show a valid solution.

Figure 3.1.: Pick and Place – Environment, task plan, and trajectory optimization problem.

3.2. Pick and Place – The Basic Building Block
We analyze the trajectory optimization problem for the Pick and Place task plan, which is
the basic building block in manipulation planning. The problem is shown in Fig. 3.1. (a)
Shows the environment with the robot and the object, (b) shows the chosen Pick and Place
task plan, and (c) represents the trajectory optimization problem that we have to solve to
compute a robot motion for this task plan.

36

3.2. Pick and Place – The Basic Building Block

𝑏0

𝑞0

𝜏
𝑞

1

𝜏𝑏1

𝑏1

𝑞1

𝑏2

𝑞2

𝜏
𝑞

2

𝜏𝑏2

Ref

Ref Grasp Pose

Kin Kin

Figure 3.2.: Factored-NLP of a Pick and Place task plan (see Fig. 3.1). Circles represent vari-
ables and squares represent constraints. The vertical slices represent the initial
state, the two keyframes of the manipulation plan, and the trajectories between
them. Variables 𝑞, 𝑏, 𝜏𝑞 , and 𝜏𝑏 are, respectively, the robot configuration, the
object pose, the robot trajectory, and the object trajectory. The subindices denote
the time step. The meaning of each constraint (Ref, Kin, Grasp, Pose) is explained
in the main text. Brown squares represent collision avoidance constraints be-
tween the object, robot, and environment. Gray squares indicate the boundary
value constraints between trajectories and keyframes. For clarity, joint limits on
𝑞 and additional constraints on the trajectories, such as zero velocity or collision
avoidance within trajectories, are not drawn, but they are detailed in the main
text.

The graphical representation of the Factored-NLP is shown in Fig. 3.2. Circles represent
variables, squares represent constraints, and edges indicate the dependencies between
variables and constraints. In the following, we explain the meaning of the variables and
constraints that appear in the Factored-NLP in Fig. 3.2.

Variables Variables in the optimization problem represent the robot and object config-
urations in each keyframe (𝑞, 𝑏) and the trajectories between the keyframes (𝜏𝑏 , 𝜏𝑞). The
subscript indicates the time step. Variable 𝑞0 ∈ R7 is the initial configuration of the robot,
𝑞1 ∈ R7 is the configuration in the pick keyframe, and 𝑞2 ∈ R7 is the configuration in the
place keyframe.

The variable 𝜏
𝑞

1 ∈ R7·20 is the trajectory from the start configuration to the pick keyframe,
and 𝜏

𝑞

2 ∈ R7·20 is the trajectory from the pick keyframe to the place keyframe. The trajectories
are represented using a finite set of waypoints, e.g., 20, thus 𝜏𝑞1 , 𝜏

𝑞

2 ∈ R7·20.

The variables 𝑏 for the object pose represent the relative transformation of the object with
respect to its parent frame, as defined by the task plan. Variable 𝑏0 ∈ 𝑆𝐸(3) is the initial
pose with respect to the world frame, 𝑏1 ∈ 𝑆𝐸(3) is the object pose with respect to the

37

3. Factored Structure of Task and Motion Planning

gripper in the pick keyframe, and 𝑏2 ∈ 𝑆𝐸(3) is the object pose with respect to the table in
the place keyframe. We also introduce two variables for the trajectories of the object, 𝜏𝑏1 and
𝜏𝑏2 , relative to their parent frames. Note that in the case of prehensile manipulation, such
trajectories will be constrained to have zero velocity.

Constraints The constraints of the optimization problem are:

– Kin(𝑏0 , 𝑏1 , 𝑞1): when the robot picks up an object, the object pose with respect to the
gripper 𝑏1 is determined by the position of the end-effector 𝑝(𝑞1) and the absolute
position of the object 𝑏0. This is implemented with: 𝑏0 = 𝑝(𝑞1)⊕ 𝑏1 ,where 𝑝(𝑞) : R7 →
𝑆𝐸(3) is the pose of the end-effector with respect to the world frame, as a function of
the robot configuration, and ⊕ is the addition operator in 𝑆𝐸(3).

– Kin(𝑏1 , 𝑏2 , 𝑞2): similarly, when the robot places the object, the pose with respect to the
table 𝑏2 is determined by the position of the end-effector 𝑝(𝑞2) and the relative grasp
𝑏1.

– Grasp(𝑏1): To ensure a stable grasp, the pose of the object with respect to the gripper
must be such that the object does not fall. This can be represented with a nonlinear
function based on different grasp models (e.g., we can constrain it to be a top grasp, a
grasp that encapsulates the object between the two fingers, or a simpler touch-grasp).

– Pose(𝑏2): Similarly, the placement of the object in the place keyframe is constrained
to be stable. This can be represented with a nonlinear function based on different
placement models (e.g., a top placement of a block on a surface).

– Ref(𝑞0): The robot configuration in the initial state is fixed to the given value.

– Ref(𝑝0): The object pose in the initial state is fixed to the given value.

– Collision constraints (brown squares in Fig. 3.2) are evaluated by calculating the
distance between the collision shapes of the robot, movable object, and static envi-
ronment. Collision avoidance constraints are also added to the trajectory variables,
applying the constraint to each waypoint.

– Joint limits on the robot configurations 𝑞1 , 𝑞2 and the robot trajectories 𝜏𝑞1 , 𝜏
𝑞

2 are also
added to the optimization problem (not shown in Fig. 3.2).

– Boundary value constraints (gray squares in Fig. 3.2) tie the keyframes and the trajec-
tories together.

– Zero Velocity: the object pose is always stable with respect to its parent frame, either
the world frame when it lies in the start position, or the gripper when held by the
robot. This is represented with the equality constraints Vel0(𝜏𝑏1),Vel0(𝜏𝑏2) (not shown
in Fig. 3.2).

38

3.3. Complex Manipulation Sequences

Adding constraints between keyframes directly, e.g., Kin(𝑏0 , 𝑏1 , 𝑞1), is essential for efficient
TAMP, as it results in very informative relaxations of the Factored-NLP when removing
the trajectory variables. In the case of a stable grasp, we can add equality constraints (Kin)
directly between the variables in the keyframes, which do not depend on the intermediate
trajectory. For pushing interactions, we can add inequality constraints between keyframes
that over-approximate the reachability and affordances of a pushing motion.

Cost The Factored-NLP in Fig. 3.2 does not show any cost term, but we can add convex
quadratic costs with two purposes: to favor solutions with short and smooth trajectories, and
to act as a regularization in the optimization process, improving the convergence behavior
and success of the optimizer. For instance,

– Squared acceleration cost on the robot trajectories. Because trajectories are represented
by a finite set of waypoints, we can compute the acceleration at each waypoint using
finite differences.

– Distance between robot configurations in the keyframes, e.g., ∥𝑞1 − 𝑞2∥2.

– Regularization on robot configurations and object poses. For instance, ∥𝑞1 − 𝑞ref∥2
with a reference configuration 𝑞ref, that avoids singular configurations.

3.3. Complex Manipulation Sequences
In this section, we analyze the Factored-NLP for longer manipulation sequences in envi-
ronments with more objects and robots. Our goal is to illustrate the scalability and unique
properties of this representation, which contribute to the design of efficient planning and
learning algorithms throughout the thesis. The three essential properties of our Factored-
NLP formulation are:

– Temporal Markov structure: Constraints in the graph only connect variables from consec-
utive time steps, maintaining the sequential temporal structure of a planning problem.

– Sparse factorization: Each constraint depends only on a small subset of variables. This
becomes particularly clear in scenarios involving multiple robots and objects. For
instance, when a robot picks up an object, additional constraints are added between
that specific robot and object, but without affecting the other objects or robots in the
scene.

– Repeatable local structure: The optimization problem for a new manipulation task
contains several small building blocks that are repeated across different task plans.
For instance, when comparing the new Factored-NLPs in Figs. 3.4 and 3.5 to the

39

3. Factored Structure of Task and Motion Planning

Figure 3.3.: Example domain with two objects and two robots.

Pick and Place example, similar structures with small variations are used to model
handovers or the placement of one object on top of another.

To achieve these three properties in the Factored-NLP, it is fundamental to use a non-minimal
representation of the optimization problem. Here, non-minimal means that, given a task
plan, there often exists a smaller Factored-NLP equivalent to our formulation, using fewer
variables and constraints. For instance, note that we have added the fixed initial state as
a variable (along with constraints) to more clearly expose the temporal structure of the
problem. Furthermore, when an object does not move, we also add new variables, which
are constrained to be equal. While our non-minimal formulation is superior for planning
and learning algorithms, solving the Factored-NLP with a non-minimal formulation incurs
a small runtime penalty. If required, before employing a nonlinear solver to solve for the
full Factored-NLP or a subset, one can remove and merge fixed or equal variables using a
preprocessing step.

A domain with two robots and two objects In our second example, we consider an envi-
ronment with two movable objects, A and B, initially at A_init and B_init, and two robot
manipulators, Q and W. The high-level goal is to stack A on top of B.

We discuss the structure of the Factored-NLP for two candidate task plans that can po-
tentially achieve the high-level goal. Fig. 3.4 shows the Factored-NLP for the task plan
⟨pick B with Q from B_init, pick B with W from Q, place B with W on A⟩.

In each vertical slice of the Factored-NLP, we have continuous variables {𝑎, 𝑏, 𝑞, 𝑤} for
keyframe configurations, and {𝜏𝑎 , 𝜏𝑏 , 𝜏𝑞 , 𝜏𝑤} for trajectories. Variables 𝑎, 𝑏 are the poses of
the two objects with respect to the parent frame in the kinematic chain, and 𝑞, 𝑤 are the
robot joint configurations. Variables 𝜏𝑎 , 𝜏𝑏 , 𝜏𝑞 , 𝜏𝑤 ∈ R20·7 are the corresponding trajectories
during each motion phase (represented with 20 waypoints). In comparison to the Pick and
Place example, we now have four keyframe variables per vertical slice (instead of 2), and
4 vertical slices (instead of 3) because the task plan is longer. A feasible solution of the
Factored-NLP is shown in Fig. 3.3.

40

3.3. Complex Manipulation Sequences

𝑎0

𝜏𝑎1

𝑏0

𝑞0

𝑤0

𝜏𝑤1

𝑎1

𝑏1

𝑞1

𝑤1

𝜏𝑎2

𝜏𝑤2

𝑎2

𝑏2

𝑞2

𝑤2

𝜏𝑎3

𝜏𝑤3

𝑎3

𝑏3

𝑞3

𝑤3

Ref

Ref

Ref Ref Ref

Ref

Grasp

Grasp Pose

Ref

Kin

Kin Kin

EqualEqual Equal

Figure 3.4.: Factored-NLP for the task plan ⟨pick B with Q from B_init, pick B with W from Q,
place B with W on A⟩. We display all variables for the keyframe configurations
(𝑎, 𝑏, 𝑞, 𝑤), and the trajectory variables only for (𝜏𝑎 , 𝜏𝑤). We omit the variables
𝜏𝑏 , 𝜏𝑞 , and the constraints for zero-velocity and collisions between trajectories
to keep the illustration cleaner. Brown squares represent collision avoidance
constraints. Gray squares represent boundary constraints between trajectories
and keyframes.

Interestingly, most of the constraints are the same as in the Pick and Place example. For
instance, the collision avoidance, grasping, and positioning constraints are the same. How-
ever, this problem contains some unique, but related structures,

– In the second step, robots perform a handover. We use a Kin constraint, which is
essentially similar to the Kin constraint in the Pick and Place example, but now it
connects the two robots with object 𝐵 because the robot W picks the object from the
other robot Q.

– The Kin constraint when placing the object is also different because now the object is
placed on top of another object.

– Finally, there is a novel Equal constraint between consecutive variables for objects that
are not manipulated (in this case, object 𝐴), to ensure they remain still.

In Fig. 3.5, we show the Factored-NLP for an alternative plan: ⟨pick B with Q from B_init,
place B with Q on A⟩. Note how the Factored-NLP has three columns instead of four, and a
different global structure, while retaining many common local structures and relationships
between variables and constraints.

41

3. Factored Structure of Task and Motion Planning

𝑎0

𝜏𝑎1

𝑏0

𝑞0

𝑤0

𝜏𝑤1

𝑎1

𝑏1

𝑞1

𝑤1

𝜏𝑎2

𝜏𝑤2

𝑎2

𝑏2

𝑞2

𝑤2

Ref

Ref

Ref Ref Ref

Ref

Grasp

Pose

Kin

Kin

Equal Equal

Figure 3.5.: Factored-NLP for the task plan ⟨pick B with Q from B_init, place B with Q on A⟩
in the domain referenced in Fig. 3.3. See main text and caption of Fig. 3.4.

Our novel planning formulation, Planning with Nonlinear Constraints, dictates which con-
straints appear in the graph, depending on the high-level task plan. A formal definition
and analysis will be provided later in Chapter 5.

We emphasize that a single Factored-NLP cannot represent the full TAMP problem because
the Factored-NLP is conditioned on the task plan, which is a priori unknown and should
also be optimized within a TAMP problem. In difficult TAMP problems, most Factored-
NLPs are infeasible since the candidate task plan fails when considering collisions and
physics constraints. This is illustrated in our example: from the two Factored-NLPs shown
in Figs. 3.4 and 3.5, only the first one is feasible in the environment shown in Fig. 3.3. The
second plan would fail because the robot 𝑄 cannot place object 𝐵 correctly on top of object
𝐴 because 𝐴 is too far.

42

Part I.

Integrated Planning and
Optimization for Task and Motion

Planning

43

Chapter4
Diverse Task Planning for Solving Logic

Geometric Programs

4.1. Introduction
In this chapter1, we combine state-of-the-art diverse classical planning with trajectory opti-
mization within the Logic Geometric Program (LGP) formulation.

A central challenge in Task and Motion Planning (TAMP) is the integration of information
and tools from both the discrete and continuous domains. Efficient solvers for either the
discrete or the continuous levels of TAMP problems are readily available, such as trajectory
optimization using constrained optimization or classical planning with heuristic search.
However, these tools are not directly applicable to the full problem, and their integration is
neither trivial nor direct.

This limitation has led to the creation of custom TAMP solvers that can better reason about
the dependencies between logic and geometry. However, these solutions often fall short in
performance compared to mature, state-of-the-art solvers for each of the subproblems. The
Multi-Bound Tree Search (MBTS) serves as a prominent example, being a leading solver
for TAMP problems. It employs a custom tree search algorithm that explores the search
space in a breadth-first manner, combining information from both geometry and logic with
a multi-bound strategy.

Our new solver, Diverse Planning for LGP, interfaces high-level task planning with low-level
trajectory optimization by identifying geometric conflicts in the form of infeasible plan

1This chapter is based on the paper: Ortiz-Haro, J., Karpas, E., Toussaint, M., and Katz, M. (2022). Conflict-
directed Diverse Planning for Logic-Geometric Programming. In Proceedings of the International Conference
on Automated Planning and Scheduling (Vol. 32, pp. 279-287).

45

4. Diverse Task Planning for Solving Logic Geometric Programs

Figure 4.1.: Example of a TAMP problem solved by our algorithm. The objective is to com-
pute the task plan and the continuous motion that achieves the high-level goal
(ball on block A) and (block A on block B) (bottom right) from the initial configu-
ration (top left). This requires combined logic and geometric reasoning about
tool-use, pushing, and pick and place actions with two robot manipulators.

prefixes, and employs a new multi-prefix forbidding compilation to transmit this informa-
tion back into the task planner. Additionally, we leverage diverse planning with a new
novelty criterion for selecting candidate plans based on prefix novelty, and a metareason-
ing approach which attempts to extract only useful conflicts by leveraging the information
gathered in the course of solving the given problem.

While Multi-Bound Tree Search can use a similar notion of geometric prefix-conflicts in-
ternally in the custom tree search, our approach enables the combination of off-the-shelf
state-of-the-art PDDL planning with trajectory optimization. This combination allows us to
solve problems that require complex reasoning at both the continuous and discrete levels
more quickly. For instance, the manipulation task shown in Fig. 4.1 requires reasoning
about tool-use, pushing, and pick and place actions with two robot manipulators.

The enhancement in the discrete search makes the solver faster, facilitating the generation
of multiple candidate plans and allowing for the incorporation of new ideas and techniques
from the planning community such as diverse planning and metareasoning.

We demonstrate that our combination not only accelerates the discrete search but also
reduces the number of optimization problems solved in the continuous layer, resulting in
faster solution times.

46

4.2. Related Work

4.2. Related Work
A comprehensive review of related work in Task and Motion Planning is available in
Section 2.4. The closest approaches to ours are sample-based TAMP solvers that attempt to
identify geometric conflicts and encode this information back into the discrete descriptions,
either using a set of predefined predicates [Srivastava et al., 2014] or by adding additional
constraints to an incremental constraint satisfaction solver [Dantam et al., 2018].

We follow the LGP formulation of Task and Motion Planning and provide an alternative to
the Multi-Bound Tree Search [Toussaint and Lopes, 2017] algorithm. The interface between
the high-level task plan and the low-level motion, focusing on prefixes of task plans that are
infeasible, is consistent across both solvers. However, the encoding techniques and tools
used in the discrete search are more advanced in our approach, leading to a more efficient
TAMP solver, as our experiments demonstrate.

Our solver employs tools from classical planning and conflict-based search to solve an LGP.
These ideas and tools are further refined in the Factored-NLP Planner (Chapter 5), resulting
in a more efficient bidirectional interface that exploits the factorization of TAMP problems.

4.3. Factorization of the Discrete State Space
Diverse Planning for LGP builds on top of Logic Geometric Programming (Section 2.3) and
classical planning (Section 2.2). We refer to Section 2.3 for an extensive introduction to the
LGP formulation and notation, which we adopt in this chapter.

In order to use off-the-shelf discrete planners, we first need a factorized representation of
the discrete state space in terms of discrete variables. As exemplified in the Blocksworld
domain (Section 2.2), this factorization is readily available if we consider an object- and
robot-centric representation.

To transform the discrete search component of the LGP into a classical planning problem
using the SAS+ encoding (Section 2.2), we introduce a discrete variable for each movable
object and robot. Variables for objects, e.g., parent_A for block 𝐴, indicate where the object
is in a discrete sense, e.g., on the table, on top of another object, or held by the gripper;
but without defining the continuous relative transformation. Specifically, these variables
indicate the “parent” in the kinematic tree and (implicitly) the type of interaction (e.g.,
stable pick by a gripper or push by a stick). Consequently, we use the term “parent”, e.g.,
the discrete variable for object 𝐴 is called parent_A. Variables for robots indicate whether
the robots are interacting with any object (e.g., the gripper can be full or empty).

Consider the scenario in Fig. 4.1 with two robots (𝑄 and 𝑊), two blocks (𝐴 and 𝐵), a ball,
and a stick, where robots can pick up the blocks and use the stick to push the ball. We can

47

4. Diverse Task Planning for Solving Logic Geometric Programs

represent the discrete state using six discrete variables: {parent_A, parent_B, parent_Stick,
robot_Q, robot_W, parent_Ball}. The sets of possible values for each variable are:

– parent_A ∈ { table, block_B, robot_Q, robot_W, A_init },

– parent_B ∈ { table, block_A, robot_Q, robot_W, B_init },

– parent_Stick ∈ { table, robot_Q, robot_W, Stick_init },

– robot_Q ∈ { free, full },

– robot_W ∈ { free, full },

– parent_Ball ∈ { table, block_A, block_B , robot_Q, robot_W,
Ball_init, Stick }.

A discrete state 𝑠 ∈ 𝒮 is a value assignment to all the variables. For instance, the initial state
𝑠0 in Fig. 4.1 is:

parent_A = A_init, parent_B = B_init,
parent_Stick = Stick_init, robot_Q = free,
robot_W = free, parent_Ball = Ball_init.

In a more concise way, we can also represent the initial state as a set of predicates that are
true:

(A on A_init), (B on B_init), (Stick on Stick_init),
(Q free), (W free), (Ball on Ball_init),

where, for example, (A on A_init) means that parent_A = A_init. Similarly, we can
represent every discrete action 𝑎 ∈ 𝒜 in the LGP formulation as a pair of conditions and
effects on the discrete variables. For instance:

– Action: pick block B with robot Q from B_init

Conditions: parent_B = B_init, robot_Q = free.
Effects: robot_Q = full, parent_B = robot_Q.

– Action: place block B with robot Q on block A

Conditions: parent_B = robot_Q. robot_Q = full.
Effects: parent_B = block_A, robot_Q = free.

4.4. Diverse Task Planning for LGP
The fundamental contribution of this chapter is the application of diverse planning at the
task level of a Logic Geometric Programming (LGP) problem, yielding a varied sequence of
task plans. Diverse Planning for LGP is an iterative Task and Motion Planning (TAMP) solver,
where candidate task plans are checked for geometric feasibility by solving a trajectory

48

4.4. Diverse Task Planning for LGP

Task Planner
+ Diversity

Task
Plan

Motion Planner
+ Conflict Extraction Solution

Discrete Planning
Task

Reformulation Infeasible Prefix

Figure 4.2.: Overview of our approach Diverse Planning for LGP. We combine a discrete task
planner to generate task plans with a motion planner to compute the continuous
trajectory. If a plan is not geometrically feasible, we extract a conflict, namely a
prefix of discrete actions of the task plan, and reformulate the discrete planning
task to block this prefix.

optimization problem. Crucially, if a task plan is not geometrically feasible, we extract a
conflict and use this conflict to reformulate the planning task. Specifically, we build upon
and extend the iterative plan forbidding approach [Katz and Sohrabi, 2020] to generate
diverse and conflict-free candidate plans.

In this chapter, we address conflicts in the form of task plan prefixes – that is, a sequence
of discrete actions 𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩ which is applicable from the initial state at the discrete
level but lacks a feasible geometric trajectory. To exploit such conflicts, in a manner akin to
conflict-directed clause learning [Silva and Sakallah, 1999] or conflict-directed A* [Williams
and Ragno, 2007], two steps are required. First, we must be able to efficiently extract a
conflict from a task plan that is not geometrically feasible. Second, we must prevent our
task planner from generating plans that contain the identified conflict as a prefix. Both of
these will be elaborated on later.

The flowchart in Fig. 4.2 provides a graphical description, and Algorithm 4.1, which appears
later, shows the pseudocode for our approach. Fig. 4.3 provides an example of the execution
of our solver in a simplified setting.

4.4.1. Prefixes as Conflicts

To begin the detailed discussion of our approach, we discuss why we choose to identify
prefixes as conflicts, and not a more general restriction on plans.

49

4. Diverse Task Planning for Solving Logic Geometric Programs

Definition 4.1. Given a sequence of discrete actions 𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩, the prefix of length
𝑘 ≤ |𝜋| = 𝐾 is denoted as,

𝜋|𝑘 = ⟨𝑎1 , . . . , 𝑎𝑘⟩ . (4.1)

Theorem 4.1. Let𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩ be a sequence of discrete actions, such that𝜋 is not geometrically
feasible from the initial state. Then any sequence of actions 𝜋′ which contains 𝜋 as a prefix is not
geometrically feasible from the initial state.

Proof. Recall that a sequence 𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩ of 𝐾 actions is not geometrically feasible if
the nonlinear optimization Trajectory-NLP(𝜋) (Eq. (2.14)) is infeasible.

For the sake of contradiction, assume that, given an infeasible prefix 𝜋, there exists a longer
task plan 𝜋′ = ⟨𝜋, 𝑎′1:𝐽⟩ that is feasible. If 𝜋′ is feasible, then there exists a geometric path
𝑥(𝑡), 𝑡 ∈ [0, (𝐾 + 𝐽)𝑇] that is feasible for Trajectory-NLP(⟨𝜋, 𝑎′1:𝐽⟩). This would imply that
𝑥(𝑡), 𝑡 ∈ [0, 𝐾𝑇] is also a feasible solution for Trajectory-NLP(𝜋), because variables and
constraints in the time interval 𝑡 ∈ [0, 𝐾𝑇] are the same in Trajectory-NLP(⟨𝜋, 𝑎′1:𝐽⟩) and
Trajectory-NLP(𝜋). This is a contradiction because 𝜋 is said to be infeasible. Therefore,
𝜋′ = ⟨𝜋, 𝑎′1:𝐽⟩ cannot be feasible.

For example, consider an LGP task in which a single robot 𝑄 can pick and place objects 𝐴
and 𝐵 on a cluttered table. Suppose the starting sequence:

⟨pick B with Q from B_init, place B with Q on table⟩,

is infeasible from the initial discrete state [parent_A=A_init, parent_B=B_init, robot_Q =

free]. Then it is safe to infer that any action sequence beginning with this sequence is also
infeasible, e.g., ⟨ pick B with Q from B_init, place B with Q on table, pick A with Q

from A_init ⟩.

However, it is not safe to infer that ⟨pick B with Q from B_init, place B with Q on table⟩
can never be applied. For example, it is possible that object 𝐴 in the initial position is
obstructing the placement of object 𝐵. Thus, the sequence of actions:

⟨ pick A with Q from A_init, place A with Q on table, pick B with Q from B_init,
place B with Q on table ⟩

might be geometrically feasible. In this example, pick A and place B form a causal link
[Tate, 1977], as pick A supports place B. However, this causal link does not appear at the
discrete level but only at the geometric level. It is not possible to infer a stronger conflict
than prefixes without a deeper analysis of geometric feasibility (Chapter 5).

Prefix forbidding is a general and sound way to encode information from the geometric level
back into the discrete level. It does not rely on hand-crafted additional predicates or checks
and is therefore applicable to any sequence of actions, independently of the underlying
physics or geometry model.

50

4.4. Diverse Task Planning for LGP

4.4.2. Forbidding Plans by Prefixes

This section describes how to prevent a discrete planner from returning task plans which
begin with a given set of prefixes, found to be geometrically infeasible in a previous iteration.

Our approach builds upon previous work [Katz et al., 2018a], which has suggested a plan
forbidding reformulation, a method of constructing a planning task with a set of valid plans
being reduced by precisely the given plan. The suggested construction follows the execution
of the given task plan ⟨𝑎1 , . . . , 𝑎𝐾⟩ and allows one to achieve the (modified) goal only once
an action different from 𝑎𝑘 is applied at step 𝑘.

We modify this construction in two ways. First, instead of forbidding ⟨𝑎1 , . . . , 𝑎𝐾⟩ as a plan,
we forbid it as a prefix. Thus, applying the starting sequence ⟨𝑎1 , . . . , 𝑎𝐾⟩ in the reformulated
task leads to a dead end. Consequently, there are no plans for the reformulation with the
prefix ⟨𝑎1 , . . . , 𝑎𝐾⟩.

Second, we simultaneously forbid multiple prefixes. While this effect can be achieved
by sequentially forbidding a single prefix, the simultaneous forbidding approach yields a
much more compact compilation.

The key to the simultaneous forbidding approach is building a prefix tree that contains all
(non-dominated) prefixes. A prefix �̃� is dominated by prefix 𝜋 if 𝜋 is a prefix of �̃�; in this
case, it is sufficient to forbid 𝜋 and not �̃�. We construct a tree 𝑇 = (𝑁, 𝐸) where each node
corresponds to a prefix, and there is an edge from node 𝜋 to node 𝜋′ if we can add one
action to 𝜋 to yield 𝜋′. Given a set of prefixes, this tree can be efficiently constructed by
adding the nodes from each prefix iteratively. Given a prefix tree, Definition 4.2 shows how
to construct a planning task that forbids exactly these prefixes.

Definition 4.2. Let Π = ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ be a planning task using the SAS+ encoding (Sec-
tion 2.2), 𝑇 = (𝑁, 𝐸) be a prefix tree with 𝐿 ⊆ 𝑁 being the leaf nodes, and𝒜(𝑇) be the set of
discrete actions that appear on the prefixes in 𝑇. The task Π−

𝑇
= ⟨𝒱′,𝒜′, 𝑠′0 , 𝑔′⟩ is defined

as follows:

– 𝒱′ = 𝒱 ∪ {𝑣} ∪ {𝑣𝑠 | 𝑠 ∈ 𝑁}, with 𝑣𝑠 being binary variables and 𝑣 being a ternary
variable,

– 𝒜′ = 𝒜𝑒 ∪𝒜1 ∪𝒜2 ∪𝒜3, where
𝒜𝑒 = {𝑎𝑒 | 𝑎 ∈ 𝒜 \ 𝒜(𝑇)}, 𝒜1 = {𝑎1 | 𝑎 ∈ 𝒜}, 𝒜2 = {𝑎2 | 𝑎 ∈ 𝒜(𝑇)}, and

51

4. Diverse Task Planning for Solving Logic Geometric Programs

𝒜3 = {𝑎3
(𝑠,𝑡) | (𝑠, 𝑡) ∈ 𝐸} with

𝑎𝑒 = ⟨pre(𝑎) ∪ {⟨𝑣, 1⟩}, eff (𝑎) ∪ {⟨𝑣, 0⟩}⟩
𝑎1 = ⟨pre(𝑎) ∪ {⟨𝑣, 0⟩}, eff (𝑎)⟩
𝑎2 = ⟨pre(𝑎) ∪ {⟨𝑣, 1⟩} ∪ {⟨𝑣𝑠 , 0⟩ | (𝑠, 𝑡) ∈ 𝐸𝑎},

eff (𝑎) ∪ {⟨𝑣, 0⟩}⟩
𝑎3
(𝑠,𝑡) = ⟨pre(𝑎(𝑠,𝑡)) ∪ {⟨𝑣, 1⟩, ⟨𝑣𝑠 , 1⟩},

eff (𝑎(𝑠,𝑡)) ∪ {⟨𝑣𝑠 , 0⟩, ⟨𝑣𝑡 , 1⟩}⟩ if 𝑡 ∉ 𝐿,
𝑎3
(𝑠,𝑡) = ⟨pre(𝑎(𝑠,𝑡)) ∪ {⟨𝑣, 1⟩, ⟨𝑣𝑠 , 1⟩}, {⟨𝑣, 2⟩}⟩ if 𝑡 ∈ 𝐿,

– 𝑠′0[𝑣] = 𝑠0[𝑣] for all 𝑣 ∈ 𝒱, 𝑠′0[𝑣] = 1, 𝑠′0[𝑣𝑠0] = 1, and 𝑠′0[𝑣𝑠] = 0 for all 𝑠 ∈ 𝑁 \ {𝑠0},
and

– 𝑔′[𝑣]= 𝑔[𝑣] for all 𝑣 ∈𝒱 s.t. 𝑔[𝑣] defined, and 𝑔′[𝑣]=0.

The proof of the correctness of the compilation is similar to the proof of Theorem 6 in [Katz
et al., 2018a]. The main difference between the two reformulations is in the application of
𝑎3
(𝑠,𝑡) for 𝑡 ∈ 𝐿, which leads to a dead-end state.

Finally, we remark that the conflicts we extract can be encoded as PDDL 3 trajectory con-
straints [Gerevini et al., 2009]. These can be compiled away [Baier and McIlraith, 2006], and
the above-mentioned compilation is a special case of such a compilation.

4.4.3. Feasibility Checking

If a candidate task plan 𝜋 = ⟨𝑎1 , . . . , 𝑎𝐾⟩ is found to be geometrically feasible, then we have
found a solution to our LGP task and can terminate. Otherwise, we can return the full plan
⟨𝑎1 , . . . , 𝑎𝐾⟩ as a conflict. We will refer to doing this as lazy conflict extraction.

Alternatively, we can also search for a stronger conflict, in the form of a shorter prefix of
𝜋 that is not geometrically feasible, which we refer to as eager conflict extraction. Eager
conflict extraction searches for the strongest possible conflict we can extract from 𝜋, that is,
the shortest prefix 𝜋|𝑘 which is geometrically infeasible, i.e.

min 𝑘 s.t. Feas(𝜋|𝑘) = 0, (4.2)

where Feas(𝜋) is a binary function that returns 1 if Trajectory-NLP(𝜋) is feasible or 0
otherwise. By Theorem 4.1, Feas(𝜋|𝑘) ≥ Feas(𝜋|𝑘+1). Therefore, we can find the strongest
conflict with a binary search for the length 𝑘 of this prefix.

52

4.5. Metareasoning for Conflict Extraction

Initially, the lower bound 𝑙 is initialized to 0, and the upper bound 𝑢 is initialized to 𝐾.
The evaluation of Feas(𝜋|𝑚), for the midpoint 𝑚 = ⌊ 𝑙+𝑢2 ⌋, corresponds to checking with the
motion planner whether the prefix up to 𝑚 is geometrically feasible.

As geometric feasibility checking is the most expensive computational action we perform,
we cache every prefix we check and whether it is feasible or not. This cache is helpful
in speeding up feasibility checking, as different discrete plans might still share a common
prefix. Additionally, this cache serves as a dataset that captures the history of computa-
tional actions performed so far, which will be useful for (a) metareasoning about feasibility
checking, and (b) guiding our choice of which plan to check for feasibility next when we
use diverse planning. These are described in the subsequent sections. Additionally, we can
use the pose and keyframes bounds (Eqs. (2.15) and (2.16)) to accelerate conflict extraction
(see also Section 4.7).

4.5. Metareasoning for Conflict Extraction
A middle-ground approach between lazy conflict extraction (which does not perform any
reasoning to extract conflicts) and eager (which attempts to find the minimal conflict) is to
use metareasoning. Metareasoning [Russell and Wefald, 1991] can be used to balance the
cost (the computational effort spent on extracting a conflict) and the reward (the benefits
from having a stronger conflict). As the most expensive operation in our algorithm is
geometric feasibility checking, we measure both the reward and the cost in terms of the
number of geometric feasibility checks – either required to extract the conflict or saved by
having the conflict.

We now describe the metareasoning problem we face in deciding when to stop looking
for a conflict, and the overall utility we can expect to obtain. Let 𝜏 = ⟨𝑎1 , . . . , 𝑎𝑘⟩ be some
sequence of actions. We will denote by 𝑟(𝜏) the reward from adding the conflict 𝜏. Of
course, this is an unknown quantity, and we will describe ways to estimate it later. Recall
that during the binary search for a minimal conflict, we have a discrete plan 𝜋, and a
range [𝑙 , 𝑢] such that 𝜋|𝑢 is not geometrically feasible, while 𝜋| 𝑙 is. Thus, we can define
the metareasoning problem for a given plan 𝜋 of length |𝜋| as a Markov Decision Process
(MDP) [Bellman, 1957] with states 𝑆𝜋 = {⟨𝑙 , 𝑢⟩ | 𝑙 ≤ 𝑢 = 0, . . . , |𝜋|} – that is, each state
describes the current range of the search.

The terminal states are those where the search has converged, that is, {⟨𝑙 , 𝑙⟩ | 𝑙 = 0, . . . , |𝜋|}.
The reward in state ⟨𝑙 , 𝑙⟩ is the reward from adding the conflict 𝜋| 𝑙 , that is, 𝑟(𝜋| 𝑙). The
reward from all other states is 0. As we are sure to reach a terminal state, there is no need
to introduce a discount factor (that is, 𝛾 = 1).

53

4. Diverse Task Planning for Solving Logic Geometric Programs

The possible actions at state ⟨𝑙 , 𝑢⟩ are either to stop searching or continue searching. The
decision to stop searching yields a deterministic transition to the state ⟨𝑢, 𝑢⟩ – that is, we
terminate and add the conflict 𝜋|𝑢 , obtaining reward 𝑟(𝜋|𝑢).

Although the binary search always continues the search by checking the middle node
(⌊(𝑙 + 𝑢)/2⌋), using the metareasoning MDP allows us to consider any of the nodes between
𝑙 and 𝑢 as the next node to check. Thus, we have 𝑢 − 𝑙 + 1 possible actions – one for each
node in the range.

Let us denote the probability of a sequence of actions 𝜏 being geometrically feasible by 𝑝 𝑓 (𝜏).
Then by continuing the search to node 𝑚 (representing 𝜋|𝑚), we reach the state ⟨𝑚, 𝑢⟩ with
probability 𝑝 𝑓 (𝜋|𝑚), and state ⟨𝑙 , 𝑚⟩ with probability 1 − 𝑝 𝑓 (𝜋|𝑚).

Due to the structure of this MDP, which lacks any loops, we can compute the optimal values
using simple dynamic programming, starting with the terminal states, and computing the
optimal value function for states with an increasing gap between the lower and upper
bounds – that is, we compute the value for states {⟨𝑙 , 𝑙 + 1⟩ | 𝑙 = 1, . . . , |𝜋| − 1}, then for
{⟨𝑙 , 𝑙 + 2⟩ | 𝑙 = 1, . . . , |𝜋| − 2}, and so on.

Of course, we still do not know the exact rewards or transition probabilities. In the following,
we describe a data-driven method to estimate these, which allows us to compute an optimal
policy for an approximate MDP.

Data-driven estimation Although computing 𝑟(𝜏) exactly is not tractable, it should be
commensurate with the number of discrete plans that would be pruned by introducing the
conflict 𝜏. While we do not know this number, we can estimate the fraction of plans that
would be pruned by conflict 𝜏 by the fraction of plans we have discovered that have 𝜏 as a
prefix. Thus, we can define the estimator,

𝑟(𝜏) :=
|{𝜋′ | 𝜋′ ∈ 𝐶 and 𝜏 is a prefix of 𝜋′}|

|𝐶 | , (4.3)

where 𝐶 is the set of prefixes in our cache. As the number of matching prefixes in the
numerator might be 0 (especially early on in the process), we actually add 1 to both the
numerator and the denominator.

The probability of a prefix being feasible or not can also be estimated from the history of
previous feasibility checks. Recall that we cache every prefix we check for feasibility. We
use this cache to estimate 𝑝 𝑓 . We follow a type system approach [Lelis, 2013] and define
a set of simple features for each prefix. Specifically, we use the length of the prefix as its
only feature, and keep track of how many feasibility checks were performed for each prefix
length, and how many of these turned out to be feasible – the ratio between these is our

54

4.6. Diversity Criteria and Complete Algorithm

Algorithm 4.1 Pseudocode for Diverse Planning for LGP.
1: Input: LGP problem ΠLGP
2: Parameters: 𝑁 ⊲ Number of plans to generate at each iteration.
3: Π := discrete component of ΠLGP ⊲ Discrete component of an LGP,

encoded in SAS+
4: 𝑇 := ∅ ⊲ Set of tried plans
5: 𝐿𝑃 := ∅ ⊲ Set of found discrete plans
6: 𝑀𝐶 := ∅ ⊲ Set of found conflicts
7: while not solved do
8: Π 𝑓 := FORBID(Π, 𝐿𝑃 ∪𝑀𝐶) ⊲ Forbid found plans and conflicts

(Section 4.4.2)
9: 𝐿𝑃 := 𝐿𝑃 ∪Diverse-Plan(Π 𝑓 , 𝑁) ⊲ Call a diverse planner to find 𝑁

new plans
10: 𝜋 := SELECT(𝐿𝑃, 𝑇) ⊲ Select a plan to try (Section 4.6)
11: feasible, traj := MOTION-Feasible? (ΠLGP ,𝜋) ⊲ Check task plan 𝜋

for geometric feasibility
12: if feasible then return 𝜋, traj ⊲ Return trajectory and discrete plan
13: else
14: 𝑇 := 𝑇 ∪ {𝜋}
15: conflict := FIND-CONFLICT(𝜋) ⊲ Find a prefix of 𝜋 that is

infeasible (Sections 4.4.3 and 4.5)
16: 𝑀𝐶 := 𝑀𝐶 ∪ {conflict}
17: end if
18: end while

estimate of 𝑝 𝑓 , denoted 𝑝 𝑓 . Combining 𝑟 and 𝑝 𝑓 , we can define our MDP. As our empirical
results will show, this approach results in a reduction of the runtime of our solver.

4.6. Diversity Criteria and Complete Algorithm
To explore candidate task plans more rapidly, we use a diverse planning approach [Katz
et al., 2018b]. The key idea here is to generate multiple plans at each iteration, and then
choose one of them for geometric feasibility checking.

Generating a set of plans is done by applying the forbidding compilation (Definition 4.2)
iteratively, as done in previous diverse planning approaches [Katz et al., 2018b].

The main question here is how to choose which plan to test next. Our approach is driven
by prefixes, so it makes sense to choose a plan that has the longest novel prefix, as even
if that plan fails, there is a higher chance that we will extract a short conflict from it.
Furthermore, choosing a plan with a novel prefix encourages our approach to explore the

55

4. Diverse Task Planning for Solving Logic Geometric Programs

space of discrete plans, thereby covering diverse high-level approaches to the task that
imply different nonlinear programs for the continuous trajectory.

Thus, we define the novelty of a plan 𝜋 with respect to a set of plans 𝐿𝑃 as,

𝑛𝑝(𝜋, 𝐿𝑃) := −min{𝑘 ∈ N | ∀𝜋′ ∈ 𝐿𝑃,𝜋′ |𝑘 ≠ 𝜋|𝑘}. (4.4)

We then choose to test the plan 𝜋 which maximizes the novelty with respect to the set of
plans that were already tested for geometric feasibility, breaking ties randomly. We remark
that this notion of novelty is different from previous ones, e.g., [Lipovetzky, 2021, Tuisov
and Katz, 2021], and serves as a greedy selection criterion for choosing the next plan.

To summarize, Algorithm 4.1 describes our complete solver in pseudocode, and Fig. 4.3
shows an illustrative example of the execution of our algorithm in a simplified setting. We
can now state the theorem proving that our approach is sound and complete.

Theorem 4.2. If the underlying task planner is sound and complete, and the motion planner always
finds a feasible trajectory for problems (2.14) if such a trajectory exists, then Algorithm 4.1 is sound
and complete.

Proof. The proof follows from the fact that we only identify prefixes which cannot appear
at the beginning of geometrically feasible plans (Theorem 4.1), and from the correctness of
the forbidding compilation (Definition 4.2).

An important technical point is that some planners perform a relevance analysis and discard
actions or state variables which they consider to be useless or redundant. For example, two
actions might have the same discrete effects, and thus the planner might decide to keep only
one of them. However, these actions might lead to different geometric constraints, and it
may be the case that one of them is feasible while the other is not. Thus, such preprocessing
techniques must be disabled when solving the discrete planning task.

56

4.6. Diversity Criteria and Complete Algorithm

(A on A_init) (B on B_init) (Free Q) (Free W)

pick A W A_init

place A W T

pick B W B_init

place B W A

1

pick B W B_init

place B W A

pick A W A_init

place A W T

2

pick A Q A_init

place A Q T

pick B W B_init

place B W A

3

pick B Q B_init

place B Q A

4

Figure 4.3.: Illustrative example of the execution of our algorithm (with 𝑁 = 1 and eager
conflict extraction). The scene contains two movable objects, A and B, a table,
T, and two robots, Q and W, that can pick and place the objects. The goal is
to stack the blocks on the table: (A on T) and (B on A). In each iteration, the
task planner has produced a task plan (1, 2, 3, and 4 in this order) that has
been tested for feasibility. The motion planner returned the minimal prefix of
infeasible discrete actions (highlighted in red), which is used to reformulate
the planning task for the subsequent iterations. Plan number 4 (in green) is
geometrically feasible.

57

4. Diverse Task Planning for Solving Logic Geometric Programs

Figure 4.4.: Three domains used to evaluate our algorithm. From left to right: Blocks, Hanoi
and Push.

4.7. Empirical Evaluation

4.7.1. Benchmarks

We use three different domains, all with two 7-DOF robotic arms (Fig. 4.4).

Blocks The robots can execute pick and place actions to construct a specified tower of
blocks, similarly to the classical Blocksworld domain – except that the planner must
also come up with motion plans. Robots can hold a stack of blocks, move the boxes,
and place several objects on top of other objects. See Fig. 4.5.

Hanoi The robots can execute pick and place actions to solve a Tower of Hanoi problem
with objects of equal size and three tables. Only the top object of each tower can be
picked, and at most one tower is allowed on each table. From a logical point of view,
this is more challenging than Blocks and requires longer action sequences, but the
instances we use have fewer movable objects in the scene. See Fig. 4.5.

Push The robots can pick and place blocks and balls, pick up sticks, and use them as tools
to push balls. The goal is to move balls and blocks to a desired discrete state, for
example, stacking blocks and placing the ball on top. See Fig. 4.1.

For each domain, we generate different problems (e.g., Blocks-{0,1,2,3,4,5}) by modifying the
goal and the number of objects, increasing complexity at both the discrete and geometric
levels. Our benchmark 2 contains six problems in the domain Blocks, three in Hanoi, and
eleven in Push.

4.7.2. Baselines

We compare our new approach, Diverse Planning for LGP, against three variations of Multi-
Bound Tree Search: MBTS-{0,1,2} (See Section 2.3.1).

2Project website: https://quimortiz.github.io/ConflictPlanningLGP/

58

https://quimortiz.github.io/ConflictPlanningLGP/

4.7. Empirical Evaluation

Figure 4.5.: Examples of solutions to the problems in the Blocks (top) and Hanoi (bottom)
domains. A solution in the Push domain is shown in Fig. 4.1.

MBTS-0 does not perform geometric checks on intermediate discrete nodes; that is, it waits
until a full candidate task plan is found before solving all bounds and the complete trajectory
optimization problem. MBTS-1 and MBTS-2 check the pose and keyframes bounds (Eqs. (2.15)
and (2.16)) respectively, before expanding a discrete node in the breadth-first search.

Geometric checks during node expansion in MBTS-1 and MBTS-2 prune partial plans
that are infeasible. This reduces the branching factor of the search and subsequent node
expansions but increases the computational time spent on solving NLPs for action sequences
that do not lead to the goal.

4.7.3. Results

We use the first iteration of LAMA [Richter and Westphal, 2010] as our underlying task
planner. We ran a set of experiments comparing several versions of our approach to the
baselines – all experiments were run on an AMD Ryzen 9 5980HS CPU with a 600-second
time limit per run. Results are shown in Table 4.1. We omit problems Hanoi-2 and Blocks-5,
which were not solved by any algorithm or baseline.

Comparison to baselines Hypothesis: “Our basic novel approach (N=1, Eager conflict extrac-
tion) will be faster and solve more problems than any of the MBTS baselines”. Our method with
“𝑁 = 1, Eager” solves more problems (18 vs. 12 out of 20) and is faster (16 vs. 2) than
all the baselines MBTS-{0,1,2}. In Table 4.1, we only report MBTS-0, which shows better
performance than the other baselines.

MBTS-0 does not solve problems that require long action sequences or where the branching
factor of the tree is very high (for example, the domain Blocks contains 12 movable objects).
Due to the uninformed behavior of Breadth-First Search, it only finds a few task plans

59

4. Diverse Task Planning for Solving Logic Geometric Programs

M
BTS-0

N
=1

Eager
N

=4
Eager

N
=4

M
eta

tim
e

pose
key

tim
e

pose
key

tim
e

pose
key

tim
e

pose
key

Blocks-0
19.41.0

12.00.0
3.00.0

43.71.8
19.90.9

6.50.5
41.84.3

17.51.9
6.50.9

41.34.4
17.51.9

2.80.6
Blocks-1

-
-

-
44.81.3

18.00.0
5.00.0

44.05.6
17.12.3

4.80.9
46.56.4

17.12.3
1.70.3

Blocks-2
-

-
-

82.610.5
17.00.0

4.00.0
60.48.6

12.61.1
2.40.5

70.911.8
12.61.1

1.40.2
Blocks-3

-
-

-
1115.8

17.01.0
3.40.4

10419.7
21.72.8

5.41.1
80.212.0

20.83.1
2.10.4

Blocks-4
-

-
-

20033.1
27.18.2

6.12.8
16017.0

19.33.1
3.31.1

13922.6
17.82.7

1.30.2
H

anoi-0
10.40.4

13.00.0
4.00.0

7.00.2
7.00.0

3.00.0
10.01.9

8.00.9
3.70.8

9.11.8
8.61.1

2.90.5
H

anoi-1
34.70.7

34.00.0
6.00.0

27.00.6
17.00.0

8.00.0
18.73.1

13.51.0
5.10.6

13.82.2
14.01.0

3.40.4
Push-1

41.90.8
55.80.2

1.00.0
17.10.4

14.00.0
4.00.0

24.41.4
17.31.1

5.30.5
24.91.7

18.71.2
3.80.4

Push-2
50.01.0

64.00.0
1.00.0

49.50.9
37.00.0

13.20.1
37.11.1

23.20.9
7.20.4

34.31.6
24.30.8

3.20.2
Push-3

27.70.9
38.00.0

1.00.0
14.40.2

11.00.0
3.00.0

26.13.2
17.92.0

5.80.9
21.11.8

17.31.8
2.90.3

Push-4
75.91.5

1040.0
2.00.0

71.37.8
41.22.8

15.21.5
32.64.1

20.32.2
5.91.0

30.62.7
21.32.4

3.10.4
Push-5

1111.6
1440.1

1.00.0
20.40.3

17.00.0
5.00.0

30.82.5
23.72.2

7.40.9
29.42.4

24.42.3
3.20.4

Push-6
1171.5

1420.0
1.00.0

64.51.2
50.00.0

17.10.1
45.41.0

29.20.7
9.20.4

45.11.2
31.81.2

4.60.3
Push-7

-
-

-
68.64.6

51.33.5
19.01.6

79.15.4
52.64.0

18.01.6
70.42.6

53.02.7
7.40.5

Push-8
78.31.2

92.00.0
1.00.0

17.00.4
13.00.0

3.00.0
32.43.6

26.03.0
7.81.1

32.83.7
28.23.6

4.10.6
Push-9

24840.1
42367.2

2.50.5
63.31.3

45.00.0
16.00.0

46.26.2
32.53.7

10.41.4
49.811.9

39.79.5
5.31.7

Push-10
12.70.5

16.00.0
1.00.0

12.80.5
9.00.0

3.00.0
13.81.6

10.41.3
3.30.6

13.21.4
10.51.3

1.60.2
Push-11

-
-

-
61.19.3

25.52.3
10.71.4

26.02.0
13.40.5

3.80.4
30.55.4

16.72.5
2.60.6

Total
827

1138
24.5

976
437

145
833

376
115

783
394

57.4

Table
4.1.:Sum

m
ary

ofthe
experim

entalresults.
W

e
reportthe

com
putationaltim

e
in

seconds
(tim

e),and
the

num
ber

of
calls

to
the

m
otion

planner
for

checking
the

pose
bound

(pose)and
the

keyfram
es

bound
(key),w

ith
the

m
ean

over10
random

ized
runs

in
black

and
the

standard
deviation

ofthe
m

ean
estim

atorin
grey.

“Total”
is

the
sum

ofthe
colum

ns(note
thatthe

sum
forM

BTS-0
isoverfew

erproblem
s).A

dash
“–”

denotesthatthe
problem

w
as

notsolved
in

all10
runs.

60

4.8. Limitations

(sometimes none), none of which are geometrically feasible. Instead, our method leverages
state-of-the-art task planning to compute action sequences efficiently even in large discrete
spaces, and geometric information is encoded incrementally in the planning task through
our prefix forbidding reformulation.

Analysis of diverse planning Hypothesis: “Diverse planning with a novelty measure will
improve over incremental plan generation”. We compare “N=1, Eager” (the planner produces
a single plan, which is evaluated by the motion planner) and “N=4, Eager” (the planner
produces four plans in each iteration, which are stored in a buffer; the motion planner
evaluates the plan in the buffer that maximizes our novelty criteria).

𝑁 = 4 reduces both the overall computational time and the number of tested plans. Choos-
ing a plan from a set of candidates with our criteria is beneficial, as it enforces novelty-based
exploration in the space of candidate discrete plans. The role of prefixes and orderings in
an LGP is captured accurately by our novelty measure, which outperforms alternative plan
similarity metrics like action set similarity, which is inaccurate in the context of LGP, where
action ordering and precedence cannot be neglected.

Analysis of conflict extraction Hypothesis: “Metareasoning is faster than Eager and Lazy
conflict extraction”. For N=4, we compare three different methods for extracting prefix
conflicts: Eager (finds the minimal prefix using the keyframes bound ((2.15))), Lazy-pose (an
enhancement of Lazy that checks only the pose bound (2.16) to try to extract a conflict), and
Meta (a metareasoning approach for conflict extraction).

Our metareasoning approach delivers a speedup across problems (Meta is better in 12 vs.
Eager 6). The Lazy-pose sometimes provides small infeasible prefixes with the pose bound
Eq. (2.16), but is slower than Meta and Eager. Finally, note that relaxation bounds of feasible
NLPs are very fast to compute. This explains why, in some problems, Eager is faster than
Meta, even if it performs more geometric checks in total.

4.8. Limitations
Diverse Planning for LGP shares the main limitations of the underlying LGP formulation
and the previous MBTS solver, namely, the local convergence of nonlinear optimization
methods. Optimization methods converge only to local optima, which might prevent
finding a solution even if a problem is feasible. One way to mitigate convergence to bad local
optima is to use random restarts, as solving the same problem with different initializations
can improve the success rate.

61

4. Diverse Task Planning for Solving Logic Geometric Programs

To integrate random restarts into our conflict-based formulation, we can use a soft-conflict
formulation. Instead of blocking prefixes in the task planner, we can penalize task plans
that contain plan prefixes where the optimizer failed to find a solution. Another possible
practical implementation is to use a probabilistic hard-conflict formulation, where, in each
call to the task planner, we block a prefix with a probability proportional to the number of
times the optimizer failed to solve the corresponding optimization problem.

Further limitations for deploying the algorithms in the real world, as often encountered
in the TAMP literature, are the assumptions of accurate world information (i.e., geometry
and position of the objects), a perfect forward model used for planning, and the simple
geometric shapes of the objects.

4.9. Conclusions
In this chapter, we propose the first systematic interface between state-of-the-art task plan-
ners and nonlinear constrained path optimization methods to solve Logic Geometric Pro-
grams. A key idea of our approach is to efficiently identify geometric conflicts in the form
of minimal infeasible action prefixes and incorporate this information back into the task
planner through a multi-prefix forbidding compilation. Based on this general interface,
we further develop a metareasoning strategy to minimize the number of calls to the mo-
tion planner and a new novelty criterion for selecting plans from a set of candidates. Our
approach systematically outperforms the baseline LGP solver, solving more problems and
faster, especially when the solution requires long action sequences.

This work lays the foundations for the more efficient Factored-NLP Planner, presented in
Chapter 5, which also combines a discrete planner with trajectory optimization through an
interface based on detecting and encoding geometric conflicts. However, instead of relying
on infeasible prefixes, the Factored-NLP Planner uses a more powerful interface based
on detecting and blocking subsets of infeasible nonlinear constraints in the optimization
problems, which results in an order-of-magnitude improvement with respect to the Multi-
Bound Tree Search.

Our results suggest that incorporating a PDDL planner into Task and Motion Planning
(TAMP) solvers is crucial for enhanced performance and scalability. Besides the Factored-
NLP Planner in Chapter 5, our TAMP meta-solver in Chapter 5 also employs a PDDL solver
to compute a lower bound on the number of discrete actions required to reach the goal.

62

Chapter5
Conflict-Based Search in Factored Logic

Geometric Programs

5.1. Introduction
Despite recent advances in Task and Motion Planning (TAMP) solvers, current algorithms
struggle with high-dimensional configuration spaces (e.g., multiple robots), long-horizon
planning, and constrained environments that require joint optimization. A promising
approach to planning in such challenging settings is to efficiently interface state-of-the-
art solvers on both sides, particularly incorporating information about infeasibility from
continuous solvers back to the task level.

In Chapter 4, we illustrate how geometric conflicts in the form of task plan prefixes could
be encoded back into a discrete planner. Building on this foundation, we now aim to
find smaller conflicts to create a more efficient interface between the task level and the
motion level. To this end, in this chapter1, we present a second iterative, conflict-based
TAMP solver that combines discrete planning with nonlinear optimization with a novel
bidirectional interface.

Our approach is based on identifying minimal subsets of nonlinear constraints that guar-
antee the infeasibility of the continuous trajectory optimization problems. This information
is encoded back into the high-level task planner with a special blocking reformulation.
This new interface provides a powerful enhancement, as now one conflict can directly
block multiple different candidate plans–specifically, those that would generate a trajec-
tory optimization problem containing the infeasible constraints. In contrast, our previous

1This chapter is based on the publication: Ortiz-Haro, J., Karpas, E., Katz, M., and Toussaint, M. (2022). A
Conflict-Driven Interface Between Symbolic Planning and Nonlinear Constraint Solving. IEEE Robotics and
Automation Letters, 7(4), (pp. 10518-10525).

63

5. Conflict-Based Search in Factored Logic Geometric Programs

prefix-forbidding solver, Diverse Planning for LGP, only blocked plans with a matching task
plan prefix (Chapter 4). Given that the number of candidate high-level task plans grows
exponentially with the number of robots and objects, an efficient interface is vital for success
and scalability, as demonstrated in our evaluation.

The design of our new solver, called the Factored-NLP Planner, has required the intro-
duction of several innovative techniques and contributions: an efficient conflict detection
algorithm, a conflict-blocking reformulation of the discrete planning problem, and a precise
formulation of the TAMP problem.

As a foundation for this algorithm, we first introduce an abstract Planning with Nonlinear
Transition Constraints (PNTC) formulation, where a discrete task plan implies a factored
nonlinear program as a sub-problem, and logical predicates of the task plan can be related
to factors of the NLP. This formulation clarifies the concepts and exact assumptions our
algorithm builds on and formally defines the explicit bidirectional relation between the
discrete and the continuous components of the problem, which is exploited in our solver.

The PNTC formulation ensures both the correct relationship between the discrete and
continuous levels, and the appropriate structure in the trajectory optimization problem. In
the context of TAMP, it can be viewed as a factored variant of a Logic Geometric Program
(LGP) (Section 2.3). However, in comparison to LGP, PNTC explicitly defines a factored
structure of the implied NLP and a bidirectional mapping between symbols and constraint
factors in the resulting NLP. This is exactly the structure we need to better inform the
discrete search and is naturally available in TAMP, making our solver directly applicable to
solve TAMP and LGP problems.

We evaluate our method on three robotic TAMP scenarios that present complex intrinsic
logic-geometric dependencies requiring long action sequences. Generating solutions within
seconds, our approach clearly outperforms previous optimization-based solvers for TAMP.
We further validate the framework through real-world experiments, demonstrating that the
solver computes full task and motion plans in a few seconds.

5.2. Related Work
A comprehensive review of related work on Task and Motion Planning is provided in
Section 2.4. We now briefly position our work with respect to the most closely related
approaches.

From the perspective of classical planning, the most closely related work includes [Haslum
et al., 2018], which extends classical planning with general state constraints, and [Fernández-
González et al., 2018], which combines discrete search with convex optimization. In contrast,
the constraints of PNTC are nonlinear, defined by a sequence of discrete states and evaluated

64

5.2. Related Work

Figure 5.1.: Task and Motion Planning problems solved by our framework. Top row: Four
robot manipulators use a stick as a tool to reach a distant block. Middle row:
A heterogeneous team of robots builds a tower. Bottom row: Two real 7-DOF
manipulators solve the Tower of Hanoi puzzle.

on consecutive continuous variables. This implies a nonlinear program for the whole
sequence of continuous variables, which can model the complex continuous constraints in
the TAMP problem efficiently.

In comparison to TAMP solvers, our method is related to conflict-based solvers, such as
[Srivastava et al., 2014, Dantam et al., 2016]. These methods either use a set of predefined
predicates such “is reachable” [Srivastava et al., 2014] to incorporate information about
geometry, or block full plans or pairs of state-actions [Dantam et al., 2016]. Alternatively,
our framework can encode any type of continuous infeasibilities that potentially involve
several motion phases. In fact, instead of enumerating possible geometric failure cases, we

65

5. Conflict-Based Search in Factored Logic Geometric Programs

define nonlinear constraints to model the motion and geometry and let the solver detect
which intrinsic subset is jointly infeasible.

Compared to optimization-based solvers such as the Multi-Bound tree search [Toussaint
and Lopes, 2017] and Diverse planning for LGP (Chapter 4), we design a much more efficient
interface between task planning and motion planning, as demonstrated in our experiments.

5.3. Problem Formulation
In this section, we introduce Planning with Nonlinear Transition Constraints (PNTC). PNTC is
similar to the Logic Geometric Program formulation for TAMP; the main difference lies in
that it provides an explicit modeling of the factorization at the discrete level and within the
trajectory optimization problem. For a comprehensive introduction to the Logic Geometric
Program formulation, we direct the reader to Section 2.3.

Chapter 3 presents an intuitive and insightful explanation of the natural factorization of
trajectory optimization that occurs in Task and Motion Planning. PNTC will now formalize
the required interface between logic and geometry to generate such structured representa-
tions. This will expose three key properties–time structure, local composition, and sparse
factorization–that will be used in our solver.

Planning with Nonlinear Transition Constraints A Planning with Nonlinear Transition Con-
straints (PNTC) problem is a 7-tuple ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔,Π,ℋ , 𝑋𝑣⟩ that includes a discrete com-
ponent ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ and a continuous component ⟨ℋ , 𝑋𝑣⟩, coupled through an interface
Π.

– Discrete Component: The discrete component ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ corresponds to a classical
planning problem encoded in SAS+ (Section 2.3).

– Continuous Component: 𝑋𝑣 is a finite set of 𝑛 continuous variables {𝑥1 , . . . , 𝑥𝑛}. Each
variable takes a value in a continuous space dom(𝑥 𝑖) = 𝒳 𝑖 (e.g., 𝒳 𝑖 = R𝑛𝑖). A
continuous state 𝑥 ∈ 𝒳1 × . . . × 𝒳𝑛 = 𝒳 is a value assignment to all variables. In
the planning problem, we use the notation 𝑥𝑘 to denote the state at step 𝑘, and 𝑥 𝑖

𝑘
to

denote the variable 𝑖 at step 𝑘. ℋ is a finite set of nonlinear, piece-wise differentiable
constraint functions that are evaluated on pairs of subsets of continuous variables,ℋ =

{𝜙𝑏 : 𝒳𝑏0 × 𝒳𝑏1 → R𝑛𝑏 }. The index sets 𝑏0 , 𝑏1 ⊆ {1, . . . , 𝑛} indicate on which subsets
of variables the function 𝜙𝑏 depends. These functions define nonlinear constraints
𝜙𝑏(𝑥𝑏0 , �̃�𝑏1) {≤,=} 0 on a pair of subsets of continuous variables (𝑥𝑏0 , �̃�𝑏1) (e.g., 𝑥𝑏0 =

{𝑥1 , 𝑥2}, �̃�𝑏1 = {�̃�3}).

– Interface: The discrete and continuous components of a PNTC are coupled through
the mapping Π. Let 𝒫 be the set of all possible partial discrete states. The mapping

66

5.3. Problem Formulation

Π : 𝒫 × 𝒫 → ℋ ∪ ∅ with ⟨𝑝, �̃�⟩ ↦→ 𝜙𝑏(𝑥𝑏0 , �̃�𝑏1), maps a pair of discrete partial
states ⟨𝑝, �̃�⟩ to a nonlinear constraint function 𝜙𝑏 that is evaluated on subsets of
continuous variables 𝑥𝑏0 , �̃�𝑏1 . The empty set ∅ indicates that some pairs ⟨𝑝, �̃�⟩ do not
generate constraints. This formulation also includes constraints acting on a single
state Π(𝑝) → 𝜙𝑏(𝑥𝑏0).

A solution to a PNTC is a sequence of discrete and continuous states ⟨(𝑠0 , 𝑥0), . . . , (𝑠𝐾 , 𝑥𝐾)⟩
and discrete actions ⟨𝑎1 , . . . , 𝑎𝐾⟩ (starting from the fixed 𝑠0 and 𝑥0), such that,

𝑠𝑘 ∈ 𝒮 , 𝑘 = 0, . . . , 𝐾 (5.1a)
𝑎𝑘 ∈ 𝒜(𝑠𝑘−1), 𝑘 = 1, . . . , 𝐾 (5.1b)
𝑠𝑘 = succ(𝑠𝑘−1 , 𝑎𝑘), 𝑘 = 1, . . . , 𝐾 (5.1c)
𝑔 ⊆ 𝑠𝐾 , (5.1d)

𝑥 𝑖
𝑘
∈ 𝒳 𝑖 , 𝑘 = 0, . . . , 𝐾, 𝑖 = 1, . . . , 𝑛 (5.1e)

𝜙𝑏(𝑥𝑏0
𝑘
, 𝑥

𝑏1
𝑘+1) {≤,=} 0, 𝜙𝑏 ≡ Π(𝑝, �̃�) ,∀𝑝 ⊆ 𝑠𝑘 ,∀�̃� ⊆ 𝑠𝑘+1 , 𝑘 = 0, . . . , 𝐾 − 1. (5.1f)

Given a fixed task plan ⟨𝑎1 , . . . , 𝑎𝐾⟩, the sequence of discrete states is ⟨𝑠0 , . . . , 𝑠𝐾⟩. The
continuous states can be computed by solving the continuous feasibility program,

find 𝑥 𝑖
𝑘
∈ 𝒳 𝑖 , 𝑘 = 0, . . . , 𝐾, 𝑖 = 1, . . . , 𝑛 (5.2a)

s.t. 𝜙𝑏(𝑥𝑏0
𝑘
, 𝑥

𝑏1
𝑘+1) {≤,=} 0, 𝜙𝑏 ≡ Π(𝑝, �̃�) ,∀𝑝 ⊆ 𝑠𝑘 ,∀�̃� ⊆ 𝑠𝑘+1 , 𝑘 = 0, . . . , 𝐾 − 1. (5.2b)

Therefore, a valid task plan is only a necessary condition for the existence of a full discrete
and continuous solution and, in practice, valid discrete plans often fail at the continuous
level.

PNTC and LGP for Task and Motion Planning When comparing PNTC and LGP, we ob-
serve that PNTC is a factored formulation. The discrete state space is now factored: instead
of an unstructured discrete state space 𝒮 as in LGP (2.13), we now have a set of discrete
variables𝒱. The continuous space in PNTC is also factorized, resulting in a Factored-NLP
formulation of the trajectory optimization problems to compute the motion of robots and
objects. As highlighted in Sections 2.2 and 4.3, this factorization is naturally available in
TAMP problems that involve multiple objects and robots.

A technical difference with respect to LGP is that here we introduce special variables to
represent trajectories between keyframes within the continuous state. Thus, a continuous
state in PNTC includes both the keyframe configuration (i.e., the configuration exactly at
the phase of the transition) and the trajectory from the last keyframe, while LGP uses the
original configuration space as the continuous space (e.g., the joint values of the robot or
the object pose for a single configuration). This modification allows us to define pairs of

67

5. Conflict-Based Search in Factored Logic Geometric Programs

discrete and continuous states and generates a beneficial structure in the Factored-NLP
for conflict-based planning, which can be shown to be equivalent to the LGP formulation.
The Factored-NLP in PNTC can also be viewed as a combination of the full trajectory
optimization problem and the keyframes bound of LGP within a single more structured
optimization problem.

Notably, PNTC decomposes the nonlinear constraints that appear in the LGP problem into
a set of small constraints and introduces an explicit mapping Π that defines which parts of
the discrete plan generate which constraints.

Constraints of the form ℎpath(𝑥, 𝑠), ℎswitch(𝑥; 𝑠, 𝑠′), and ℎ̃switch(𝑥, 𝑥′; 𝑠, 𝑠′) in LGP (Eqs. (2.13)
and (2.15)) are decomposed into a set of smaller constraints {𝜙𝑏 | 𝜙𝑏 ≡ Π(𝑝, �̃�), ∀𝑝 ⊆ 𝑠, �̃� ⊆
𝑠′} in PNTC (5.2).

5.4. Factored-NLP: a Bidirectional Interface Between Task
and Motion

Given a fixed sequence of discrete states ⟨𝑠0 , . . . , 𝑠𝐾⟩, we represent the optimization problem
over the sequence of continuous variables (5.2) as a Factored-NLP, denoted by𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩).

Chapter 3 provides the basic definitions of Factored-NLPs, a detailed example for a Pick
and Place task plan, and a discussion on scalability, generalization, and properties of this
representation. All Factored-NLPs previously shown in Chapter 3 have been generated
using the PNTC formulation that we have formally defined here.

The set of variables and constraints of the Factored-NLP 𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩) is:

𝑋𝐺 = {𝑥 𝑖
𝑘
| 𝑘 = 0, . . . , 𝐾, 𝑖 = 1, . . . , 𝑛}, (5.3a)

Φ𝐺 = {𝜙𝑏 | 𝜙𝑏 ≡ Π(𝑝, �̃�), ∀𝑝 ⊆ 𝑠𝑘 , �̃� ⊆ 𝑠𝑘+1 , 𝑘 = 0, . . . , 𝐾 − 1}. (5.3b)

The factored structure of this Factored-NLP stems from the object and time factorization of
the variable set 𝑋𝐺 and the structured dependency between variables and constraints.

Factored-NLPs from the PNTC formulation have the following properties:

Property 5.1. (Local time connectivity) A variable vertex 𝑥 𝑖
𝑘

is connected to constraints that
are evaluated on variables with time index 𝑘, 𝑘 − 1, or 𝑘 + 1.

Property 5.2. (Factor time invariance) A sequence of partial states ⟨𝑝0 , . . . , 𝑝𝐿⟩ induces a
subgraph 𝑀(⟨𝑝0 , . . . , 𝑝𝐿⟩) = (𝑋𝑀 ∪Φ𝑀 , 𝐸𝑀)with:

Φ𝑀 = {𝜙𝑏 | 𝜙𝑏 ≡ Π(𝑝, �̃�), ∀𝑝 ⊆ 𝑝𝑙 , �̃� ⊆ 𝑝𝑙+1 , 𝑙 = 0, . . . , 𝐿 − 1}, (5.4a)

𝑋𝑀 = {𝑥 𝑖
𝑙
| ∃𝜙𝑏 ∈ Φ𝑀 such that 𝜙𝑏 depends on 𝑥 𝑖

𝑙
, 𝑙 = 0, . . . , 𝐿, 𝑖 = 1, . . . , 𝐼}. (5.4b)

68

5.4. Factored-NLP: a Bidirectional Interface Between Task and Motion

Figure 5.2.: Example domain with two objects and two robots.

Because the mapping from partial states to nonlinear constraints does not depend explicitly
on the time index, if a sequence of states ⟨𝑠0 , . . . , 𝑠𝐾⟩ contains a sequence of partial states
⟨𝑝0 , . . . , 𝑝𝐿⟩ starting at any time index, that is,

∃𝑘 ∈ {0, . . . , 𝐾 − 𝐿} such that 𝑝𝑙 ⊆ 𝑠𝑘+𝑙 , 𝑙 = 0, . . . , 𝐿, (5.5)

then the Factored-NLP for the sequence of partial states 𝑀(⟨𝑝0 , . . . , 𝑝𝐿⟩) is a subgraph of
the Factored-NLP of the full sequence of states 𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩),

𝑀(⟨𝑝0 , . . . , 𝑝𝐿⟩) ⊆ 𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩). (5.6)

Definition 5.1. An infeasible subgraph of a Factored-NLP (i.e., a subset of variables and
constraints) is minimal if, when removing any variables or constraints, the resulting opti-
mization problem is feasible.

Property 5.3. The minimal infeasible subgraph is connected. If the Factored-NLP 𝐺 is not
connected, the NLP associated with each connected component 𝐺 𝑗 can be solved indepen-
dently, and Feas(𝐺) = ∧

𝑗 Feas(𝐺 𝑗).

Property 5.1 and Property 5.3 are used later for detecting minimal infeasible sets of con-
straints efficiently. Property 5.2 is essential in our conflict-based algorithm, as it ensures
the correctness of the task reformulation, by allowing us to prune multiple candidate task
plans with a single conflict.

Example domain In this section, we revisit the example domain shown in Section 3.3, but
now provide a more formal and detailed description of the task plan, the constraints that
appear in the Factored-NLP, and the relationships between them, as defined by the PNTC
formulation.

Thus, we consider again a domain with a Table and two movable objects, A and B, initially
on A_init and B_init, and two robot manipulators, Q and W, with the goal of stacking A on
top of B.

69

5. Conflict-Based Search in Factored Logic Geometric Programs

𝑎0

𝜏𝑎1

𝑏0

𝑞0

𝑤0

𝜏𝑤1

𝑎1

𝑏1

𝑞1

𝑤1

𝜏𝑎2

𝜏𝑤2

𝑎2

𝑏2

𝑞2

𝑤2

𝜏𝑎3

𝜏𝑤3

𝑎3

𝑏3

𝑞3

𝑤3

Ref

Ref

Ref Ref Ref

Ref

Grasp

Grasp Pose

Ref

Kin

Kin Kin

EqualEqual Equal

Figure 5.3.: Factored-NLP of the example domain in Fig. 5.2. Circles represent variables and
squares represent constraints. We display the variables for all the keyframe con-
figurations (𝑎, 𝑏, 𝑞, 𝑤), and the trajectories (𝜏𝑎 , 𝜏𝑤) (omitting 𝜏𝑏 , 𝜏𝑞 and factors
that represent collisions between trajectories to keep the illustration cleaner).
Brown squares are collision avoidance constraints. Gray squares are boundary
constraints between trajectories and keyframes.

The discrete state space is factorized into four variables: parent_A, parent_B, robot_Q,
robot_W. The set of possible actions is defined by two action operators: pick and place.
The initial discrete state is 𝑠0 = [parent_A = A_init, parent_B = B_init, robot_Q = free,
robot_W = free] (see Chapter 4). A Factored-NLP is defined by a sequence of discrete states.
In this example, we choose the sequence of actions,

– 𝑎1: Pick B with Q from B_init,

– 𝑎2: Pick B with W from Q,

– 𝑎3: Place B with W on A.

Applying these actions from the initial discrete state 𝑠0 results in the state sequence,

– 𝑠0: [parent_A = A_init, parent_B = B_init, robot_Q = free, robot_W = free],

– 𝑠1: [parent_A = A_init, parent_B = Q, robot_Q = full, robot_W = free],

– 𝑠2: [parent_A = A_init, parent_B = W, robot_Q = free, robot_W = full],

– 𝑠3: [parent_A = A_init, parent_B = A, robot_Q = free, robot_W = free].

The Factored-NLP is shown again in Fig. 5.3. We refer to Sections 3.2 and 3.3 for an ex-
planation of variables and constraints, and we discuss here which sequences of partial
discrete states imply which constraints. Constraints operate on pairs of consecutive contin-

70

5.5. Overview: Factored-NLP Planner

uous variables, and the constraints that are applied depend on the values of the discrete
variables.

First, note that the variables for the continuous initial state 𝑥0 (i.e., 𝑎0 , 𝑏0 , 𝑞0 , 𝑤0) are also
added in the Factored-NLP, together with constraints Ref that fix their value. The mapping
Π : (𝑝, �̃�) ↦→ 𝜙 in PNTC can be implemented as a set of rules that, given a fixed task plan,
analyzes all pairs of partial states and generates the constraints in the Factored-NLP. For
instance:

– Parent_B = B_init and Parent_B’ = Q→Kin(𝑏, 𝑏′, 𝑞′)This transition occurs in 𝑠0 → 𝑠1
and generates the constraint Kin between variables 𝑏0 , 𝑏1 , 𝑞1 in the Factored-NLP.

– Parent_A = A_init→ Ref (𝑎) In all discrete states 𝑠0 , 𝑠1 , 𝑠2 , 𝑠3, the variable Parent_A

has the value A_init; the constraint Ref is applied to variable 𝑎 in all time steps:
𝑎0 , 𝑎1 , 𝑎2 and 𝑎3.

– Parent_A = A_init and Parent_A’ = A_init→Equal(𝑎, 𝑎′). In this example, object A is
always in the start position, and thus we add the constraints Equal(𝑎0 , 𝑎1), Equal(𝑎1 , 𝑎2),
and Equal(𝑎2 , 𝑎3). Note that in this case, such constraints are redundant with Ref (𝑎1),
Ref (𝑎2), Ref (𝑎3). However, Equal constraints are necessary, e.g., when placing an object
on the table, to ensure it remains still, or when holding an object for multiple time
steps.

– Parent_B = Q → Grasp(𝑏). In 𝑠1, Parent_B = Q. Therefore, we add the constraint
Grasp(𝑏1).

– Collision constraints (brown squares) are added at all time steps. They account for the
different structures in the kinematic chain (e.g., whether the object is held by the robot
or is on the table) – resulting in a slight variation of dependencies in each vertical slice
of the grasp.

– Boundary value constraints (gray squares) tie the keyframes and the trajectories at all
time steps. For instance, 𝜏𝑞1 is constrained to start at 𝑞0, and end at 𝑞1.

5.5. Overview: Factored-NLP Planner
Fig. 5.4 provides an overview of the Factored-NLP Planner for solving a PNTC, which we
will introduce in the subsequent sections. To simplify the presentation, we briefly outline
the steps of the algorithm, which are run iteratively:

1. We leverage a state-of-the-art discrete PDDL planner to find a sequence of discrete
states that are valid for the current discrete planning task.

71

5. Conflict-Based Search in Factored Logic Geometric Programs

Input: ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔,Π,ℋ , 𝑋𝑣⟩

1) Task Planner
Planning task
⟨𝒜′,𝒱′, 𝑠′0 , 𝑔

′⟩
Task Plan
⟨𝑠0 , . . . , 𝑠𝐾⟩

2) Mapping Π

Factored-NLP
𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩)

Feasible
Subgraphs

3) Nonlinear Solver
+ Conflict Extraction

4) Reformulation

Sec. 5.6 Sec. 5.4

Output: ⟨(𝑠0 , 𝑥0), . . . , (𝑠𝐾 , 𝑥𝐾)⟩

Infeasible
Subgraphs

Sec. 5.7

Figure 5.4.: Overview of the Factored-NLP Planner for solving a PNTC problem
⟨𝒱 ,𝒜 , 𝑠0 , 𝑔,Π,ℋ , 𝑋𝑣⟩. The solution is a sequence of discrete and continu-
ous states ⟨(𝑠0 , 𝑥0), . . . , (𝑠𝐾 , 𝑥𝐾)⟩.

2. We generate the Factored-NLP that represents the continuous optimization problem
for the continuous variables and the nonlinear constraints associated with the chosen
candidate task plan.

3. An NLP solver attempts to solve the Factored-NLP. If this NLP is feasible, the algo-
rithm terminates, and the output is a solution containing a sequence of discrete and
continuous states. Otherwise, a minimal conflict in the form of a minimal infeasible
subgraph (i.e., a subset of the Factored-NLP) is extracted, and all evaluated subgraphs
are stored in a database as either feasible or infeasible subgraphs.

4. Finally, we reformulate the planning task to forbid all plans that would generate a
Factored-NLP containing any subgraph previously determined to be infeasible.

5.6. Finding Small Infeasible Subgraphs
In this section, we discuss how to detect a minimal subset of infeasible constraints from
a Factored-NLP (Step 3 of the Factored-NLP Planner, Fig. 5.4). In the worst case, finding
an infeasible subgraph of minimum cardinality requires solving an NLP for each subset of
constraints, 𝑂(2|Φ𝐺 |) [Shoukry et al., 2018]. Conversely, a minimal infeasible subgraph can
be found by solving a linear number of problems [Amaldi et al., 1999]. This search can

72

5.6. Finding Small Infeasible Subgraphs

be accelerated with a divide-and-conquer strategy, with complexity 𝑂(log |Φ𝐺 |) [Junker,
2004]. Recently, [Shoukry et al., 2018] presented a technique for finding an approximately
minimal subgraph in a convex optimization problem by solving one convex program with
slack variables.

Inspired by these works, we propose an algorithm for finding small minimal infeasible
subgraphs that exploits the particular structure of the Factored-NLP in our setting, namely
the time structure and the semantic information contained within them, as well as the
convergence point of the nonlinear optimizer.

Double binary search on the time index The first key insight is to exploit the time connec-
tivity of our Factored-NLP (Property 5.1). Given an infeasible Factored-NLP𝐺(⟨𝑠0 , . . . , 𝑠𝐾⟩),
we can find a minimal temporal sequence ⟨𝑠 𝑓 , . . . , 𝑠𝑙⟩, 0 ≤ 𝑓 ≤ 𝑙 ≤ 𝐾 such that𝐺(⟨𝑠 𝑓 , . . . , 𝑠𝑙⟩)
is infeasible with a double binary search that executes 𝑂(log𝐾) calls to a nonlinear opti-
mizer. Specifically, we first compute the minimum upper index 𝑙 such that 𝐺(⟨𝑠0 , . . . , 𝑠𝑙⟩) is
infeasible. After fixing 𝑙, we compute the maximum lower index 𝑓 such that 𝐺(⟨𝑠 𝑓 , . . . , 𝑠𝑙⟩)
is infeasible.

Relaxations Binary search on time exploits the local connectivity in the temporal dimen-
sion but does not detect the infeasible factors within an infeasible temporal sequence. To
address this issue, we propose solving a set of relaxations of the Factored-NLP that evaluate
only a subset of variables and constraints. Each relaxation corresponds to a subgraph of the
Factored-NLP and is, therefore, a necessary condition for feasibility. The algorithm stores
the infeasible relaxations as candidates for the minimal subgraph.

The relaxations depend on the semantic information of the variables and constraints and are
problem-independent but domain-specific. Intuitively, we are looking for relaxations that
make the graph sparser, smaller, and potentially disconnected, while keeping those con-
straints that define the infeasible subgraph. Section 5.8.1 presents informative relaxations
in the context of Task and Motion Planning.

Leveraging the convergence point of the optimizer A powerful heuristic to discover a
smaller infeasible subset of variables and constraints is to check the convergence point of
the optimizer in an infeasible graph.

Typical optimization methods also converge for infeasible Factored-NLP 𝐺, and we can
use the convergence point as a heuristic guess to find a subgraph of 𝐺 that is infeasible.
Specifically, we test the subgraph spanned by the constraints violated at the convergence
point, i.e., 𝑀′ = (𝑋′ ∪ Φ′, 𝐸′) where Φ′ ⊆ Φ𝐺 is the set of constraints not fulfilled, and
𝑋′ = {𝑥𝑘

𝑖
∈ 𝑋𝐺 | ∃𝜙𝑏 ∈ Neigh(𝑥𝑘

𝑖
) s.t. 𝜙𝑏 ∈ Φ′}. If 𝑀′ is also infeasible, we consider only

𝑀′ as a candidate for the minimal infeasible subgraph.

73

5. Conflict-Based Search in Factored Logic Geometric Programs

The complete algorithm We combine these three ideas into one algorithm to find an
infeasible subgraph. In this algorithm, we alternate between applying relaxations (each
relaxation considers only a subset of variables and constraints) that potentially break the
full problem into disconnected components, and computing the minimal infeasible time
slice inside each connected component (with a double binary search). The convergence
point of the optimizer is used to reduce the size of the output infeasible subgraph. The
algorithm will return the first infeasible subgraph it finds, and therefore it is best to try the
relaxations in a loose to tight order, as this will likely result in a smaller infeasible subgraph
(see Alg. 1 of Appendix A in our paper for the implementation details).

Deciding whether a relaxation should be applied before or after the binary search on the
time index is rather arbitrary. To this end, a relevant observation is that solving a small
NLP that is feasible is usually an order of magnitude faster than checking that a larger NLP
is infeasible. Thus, we try to solve numerous small and feasible problems first.

Database of feasible subgraphs The graph structure of the Factored-NLP is a suitable
representation to share information about feasibility between different sequences of discrete
states. Factored-NLPs of different task plans contain common subgraphs, which correspond
to sequences of partial states that appear in both plans (potentially at different time indices).

During the execution of the Factored-NLP Planner (see Fig. 5.4), all solved subgraphs are
stored either in a feasible or an infeasible database. Before solving a new nonlinear program,
we check if it corresponds to a subgraph of any graph in the feasible database. This check
requires a graph isomorphism test [Cordella et al., 2004], based on the adjacency structure
and semantic information of the variable-vertices (the variable index 𝑖 = 1, . . . , 𝑛 and the
name of the constraint 𝜙 ∈ ℋ , without considering the time index). Given the available
semantic information, the test is fast in practice (with complexity closer to𝑂

(
(𝑛𝐾)2

)
instead

of the worst-case exponential).

Infeasible subgraphs in TAMP To conclude the section, Fig. 5.5 provides two examples of
possible infeasible subgraphs of the Factored-NLP of the example domain (Fig. 9.3), together
with an intuitive explanation of the underlying reason for the continuous infeasibility.

5.7. Reformulation of the Discrete Planning Task
In this section, we discuss how to reformulate the planning task with information about the
continuous infeasibility (Step 4 of the Factored-NLP Planner, Fig. 5.4). Specifically, given
an infeasible subgraph 𝑀, we modify the discrete planning task ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ to ensure

74

5.7. Reformulation of the Discrete Planning Task

𝑏 𝑏

𝑎

𝑞

Grasp

Kin
Ref

Ref 𝑏 𝑏

𝑞

𝑏

𝑞

𝑤

Ref

Grasp Grasp

Kin

Kin

Figure 5.5.: Two examples of possible infeasible subgraphs of the Factored-NLP shown in
Fig. 5.3. Left: the robot Q cannot pick up object B from its initial position if A is
also in the initial position, i.e., A blocks the grasp of B. Right: It is not possible to
pick up object B with the robot Q and then do a handover to robot W, e.g., due
to kinematic constraints, robot Q can only pick up the object in a certain way
that prevents a handover later.

that the discrete planner will never generate plans whose Factored-NLP contains 𝑀. The
mapping is achieved through a two-step process:

First, we translate the infeasible subgraph 𝑀 = (𝑋𝑀 ∪ Φ𝑀 , 𝐸𝑀) into a sequence of discrete
partial states ⟨𝑝0 , . . . , 𝑝𝐿⟩. Recall that each constraint 𝜙 ∈ Φ𝑀 was generated by the mapping
Π : (𝑝, �̃�) ↦→ 𝜙. We now trace this mapping back to obtain (𝑝, �̃�) which generated 𝜙,
maintaining the relative order of the partial states. Importantly, we use 𝑝0 to denote the first
partial state that appears in the conflict, which could correspond to any step 𝑘 = 1, . . . , 𝐾 of
the task plan.

Given an infeasible sequence of partial states ⟨𝑝0 , . . . , 𝑝𝐿⟩, we introduce a compilation that
eliminates plans containing ⟨𝑝0 , . . . , 𝑝𝐿⟩ starting at any time index, similarly to the plan
forbidding compilation [Katz et al., 2018b]. Our compilation introduces binary variables
𝑙 = 0, . . . , 𝐿 to indicate whether the path from 𝑠0 to 𝑠𝐾 contains the infeasible sequence
of partial states. Specifically, 𝑏𝑙 = 1 indicates that the current path contains the first 𝑙 + 1
elements of the infeasible sequence.

Given a planning task ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ and an infeasible sequence ⟨𝑝0 , . . . , 𝑝𝐿⟩, the new discrete
planning task is ⟨𝒱′,𝒜′, 𝑠′0 , 𝑔′⟩, where:

– 𝒱′ =𝒱 ∪ {𝑏0 , . . . , 𝑏𝐿},

– 𝑠′0 = 𝑠0 ∪ {𝑏𝑙 = 0 | 𝑙 = 1, . . . , 𝐿} ∪ {𝑏0 = 1 if 𝑝0 ⊆ 𝑠0; 𝑏0 = 0 otherwise},

– 𝑔′ = 𝑔 ∪ {𝑏𝐿 = 0},

– 𝒜′ = {𝑎′ = mod(𝑎), 𝑎 ∈ 𝒜},

where 𝑎′ = mod(𝑎)modifies action 𝑎 by adding conditional effects to ensure that if action 𝑎
is executed when 𝑏𝑙−1 = 1, and executing 𝑎 makes 𝑝𝑙 true, then 𝑎 sets 𝑏𝑙 = 1 and 𝑏𝑙−1 = 0.
Alternatively, if 𝑎 is executed when 𝑏𝑙−1 = 1, and it does not make 𝑝𝑙 true, then 𝑎 sets

75

5. Conflict-Based Search in Factored Logic Geometric Programs

Figure 5.6.: Three environments used in the benchmark. Left: Laboratory. Center: Workshop.
Right: Field.

𝑏𝑙−1 = 0. The last binary variable 𝑏𝐿 cannot transition from 1 to 0 (i.e., 𝑏𝐿 = 1 is a dead end).
The formal reformulation 𝑎′ = mod(𝑎) is shown in Appendix B of our paper.

We can now state the proposition which shows that this compilation eliminates exactly all
solutions which satisfy ⟨𝑝0 , . . . , 𝑝𝐿⟩.

Proposition 5.1. Let 𝑇 = ⟨𝒱 ,𝒜 , 𝑠0 , 𝑔⟩ be a SAS+ planning task, ⟨𝑝0 , . . . , 𝑝𝐿⟩ be some infeasible
sequence, and 𝑇′ = ⟨𝒱′,𝒜′, 𝑠′0 , 𝑔′⟩ be the reformulation described above. A plan 𝜋 is a solution
of 𝑇′ if and only if 𝜋 is a solution of 𝑇 and the states along 𝜋 do not contain any sequence of states
⟨𝑠′
𝑘
, . . . , 𝑠′

𝑘+𝐿⟩ such that 𝑝𝑙 ⊆ 𝑠′𝑘+𝑙 for 𝑙 = 0, . . . , 𝐿, starting at any 𝑘.

Multiple infeasible sequences are forbidden by iterative reformulation. We are now ready
to discuss the properties of our Factored-NLP Planner (Fig. 5.4):

Theorem 5.1. If the underlying classical planner is sound and complete, and the nonlinear optimizer
always finds a feasible solution if one exists, then the Factored-NLP Planner is sound and complete.

Proof Sketch: The proof follows from the fact that any sequence we forbid cannot be part
of any feasible solution (because it generates a Factored-NLP with a subgraph found to be
infeasible, Property 5.2), together with the fact that our compilation eliminates only plans
which contain these sequences (Proposition 5.1). The completeness of the algorithm does
not require the infeasible subgraphs to be minimal, nor the mapping Π. Nevertheless, these
properties are desirable for an efficient algorithm.

5.8. Experimental Results
Our algorithm is evaluated in three different simulated scenarios, where the goal is to move
obstacles, rearrange, and stack up to six blocks to build towers with several robots. The
evaluation on real robots is reported in Section 5.8.5.

76

5.8. Experimental Results

1. Laboratory (Lab): Two 7-DOF manipulator arms execute pick and place actions to build
a tower. The solution requires handovers, regrasping, and removing obstacles. It is
based on a real-world setting, Fig. 5.8.

2. Workshop (Work): An extension of the Laboratory scenario that includes four robots and
a stick that can be grasped and used as a tool to reach blocks, Fig. 5.1.

3. Field: Contains a fixed 7-DOF manipulator and a mobile 7-DOF manipulator, with
two additional action operators: start-move and end-move, for moving the base of the
mobile robot on the floor, Fig. 5.1.

For each scenario, we generate five different problems (e.g., Lab_{1,2,3,4,5}) by modifying
the discrete goal and the initial configuration to increase complexity at both the discrete
and geometric levels, while keeping the number of movable objects constant (except for the
easier versions Work_1 and Field_1).

5.8.1. Relaxations for Finding Infeasible Subgraphs

The formulation PNTC and the solver are general and domain-independent. Domain
knowledge is introduced through the relaxations used for extracting minimal conflicts
(Section 5.6). The following relaxations (applicable in any TAMP problem) are used in the
benchmark scenarios:

– Removal of trajectories: The remaining graph only contains variables for the keyframes,
considerably reducing the dimensionality of the nonlinear program while still de-
tecting most of the geometric infeasibilities. We note that this is the most important
relaxation because the dimensionality of the underlying nonlinear program is reduced
considerably (a trajectory is represented with, e.g., 20 waypoints, while a keyframe
variable corresponds to a single waypoint).

– Removal of collision constraints: Collision constraints connect all robot configuration and
object pose variables at the same time step, resulting in a densely connected graph
(see Fig. 9.3). Without collisions, the graph becomes sparse, and object and robot
variables are only connected by grasping, kinematics, and placement constraints.

– Removal of time consistency: Time-consistency constraints (Equal in Fig. 9.3) appear
when objects are not modified by a discrete action. This relaxation does not consider
the long-term dependencies of the manipulation sequence and creates a sparse time
structure.

– Removal of robot variables: The remaining graph considers only the variables for the
objects, detecting infeasible placements due to collisions between objects.

77

5. Conflict-Based Search in Factored Logic Geometric Programs

Table
5.1.:N

um
berofN

LP
evaluations

and
C

PU
tim

e,averaged
over10

random
ly

seeded
runs,w

ith
standard

deviations
in

gray.
length

O
ne-w

ay
M

BTS
FN

PP_t
FN

PP_tr
FN

PP_trn
FN

PP_trng

𝑁
0

𝑁
N

LP
tim

e
N

LP
tim

e
N

LP
tim

e
N

LP
tim

e
N

LP
tim

e
N

LP
tim

e

W
ork_1

2
4

77.00.0
8.21.0

37158.5
23.54.4

50.812.0
5.71.2

53.012.6
5.71.3

60.810.5
5.60.9

55.21.4
5.30.1

W
ork_2

4
6

-
-

-
-

-
-

11340.4
22.79.2

94.71.7
19.76.0

86.81.5
16.72.9

W
ork_3

4
6

-
-

-
-

-
-

10537.0
19.15.3

95.61.0
22.15.9

86.11.5
21.46.1

W
ork_4

8
10

-
-

-
-

-
-

2820.0
53.15.6

3071.9
56.47.6

2701.8
55.49.0

W
ork_5

8
11

-
-

-
-

-
-

-
-

3554.9
76.07.0

3095.3
76.89.4

Lab_1
2

3
25.00.0

7.11.0
25.00.0

4.10.5
21.00.0

4.50.2
25.00.0

3.20.2
30.00.0

3.30.1
28.00.0

3.30.2
Lab_2

2
3

12.00.0
3.10.5

28.90.3
3.70.5

32.00.0
5.50.3

46.00.0
4.30.2

23.00.0
2.10.1

21.00.0
2.10.1

Lab_3
4

5
19.00.0

8.41.2
34.00.0

18.52.7
26.00.0

5.90.4
23.00.0

3.10.2
25.00.0

3.30.4
24.00.0

3.20.2
Lab_4

4
9

-
-

-
-

-
-

-
-

70.00.0
6.50.6

60.13.5
6.30.4

Lab_5
12

17
-

-
-

-
-

-
87.00.0

18.71.8
93.00.0

19.12.0
83.00.0

19.02.0
Field_1

2
4

19.00.0
7.02.0

90.00.0
15.33.1

19.00.0
5.71.1

14.10.3
2.91.4

16.00.0
2.60.3

16.00.0
3.11.0

Field_2
2

6
-

-
-

-
-

-
46.00.0

6.10.4
53.00.0

6.30.5
52.50.5

6.30.5
Field_3

4
8

-
-

-
-

-
-

75.00.0
11.71.2

84.00.0
12.31.4

78.60.5
11.70.7

Field_4
6

10
-

-
-

-
-

-
67.00.0

13.21.5
77.00.0

13.61.6
76.00.0

13.51.3
Field_5

6
11

-
-

-
-

-
-

2820.0
56.56.6

2891.0
50.75.5

2620.5
51.46.6

78

5.8. Experimental Results

5.8.2. Benchmark

Algorithms under comparison We compare our approach with two different formulations
that combine a discrete search with joint nonlinear optimization for solving Task and Motion
Planning problems.

– One-way interface between Top-K Planning and a nonlinear optimizer (One-way). This
baseline combines Top-K planning [Katz et al., 2018b] to generate a set of different
task plans with a nonlinear optimizer to evaluate the plans. The planner does not
receive any information about the geometric reasons for infeasibility and only blocks
the evaluated plans.

– Multi-Bound Tree Search (MBTS). The MBTS Solver [Toussaint and Lopes, 2017] in-
crementally builds a tree in a breadth-first order to explore sequences of discrete
actions that reach the high-level goal. Instead of solving the full continuous optimiza-
tion problem directly, MBTS first computes relaxed versions (bounds) that consider a
subset of variables and constraints (see Section 2.3.1).

– Four Variations of our Factored-NLP Planner (in short, FNPP). We evaluate our full
planner FNPP_trng, and three additional versions: FNPP_t, FNPP_tr, and FNPP_trn
to conduct an ablation study of the algorithm to extract infeasible subgraphs. Suffixes
indicate: 𝑡=time search, 𝑟=relaxation, 𝑛=convergence heuristic, and 𝑔=feasible graph
database.

Metrics Each algorithm is run 10 times with different random seeds and a timeout of 100
seconds. For each method, we report on the number of evaluated NLPs (NLP) (lower is
better) and the CPU time in seconds (time) (lower is better) in Table 5.1. “–” indicates a
failure to find a solution within 100 seconds with at least a 70 % success rate.

Time2 provides an objective way to compare algorithms that use different underlying meth-
ods. The number of solved NLPs is informative but does not capture the influence of the
size and feasibility of NLPs on the running time of the solver.

For each problem, N denotes the length of the shortest found task plan that is geometrically
feasible, and 𝑁0 is the length of the task plan that solves the initial discrete task (that is,
without considering the continuous constraints). N and 𝑁0 are proxies for the difficulty:
the number of candidate plans typically grows exponentially with 𝑁 , and the difference
𝑁−𝑁0 indicates the amount of information about the continuous constraints that should be
provided to the discrete planner. The approximate branching factor is 12 in Lab_{1,2,3,4,5},
13 in Field_{2,3,4,5}, 24 in Work_{2,3,4,5}, 4 in Work_1, and 5 in Field_1.

2Experiments are conducted on a Single Core i7-1165G7@2.80GHz

79

5. Conflict-Based Search in Factored Logic Geometric Programs

Comparison to baselines Concerning the problems solved, One-way and MBTS can only
solve the easier problems in each scenario, while FNPP_trn/trng solves all the problems.
Our algorithm is significantly faster in the problems also solved by One-way and MBTS,
because the more efficient encoding of geometric information reduces the running time.

The success rate of our planners FNPP_trn/trng is 100 % in all problems except for Field_5
(80 %), Work_4 (95 %), and Work_5 (90 %) where the optimizer fails to solve feasible Factored-
NLPs in a few runs. The performance of FNPP_trng is not affected by the branching factor
of the underlying problem and provides good scaling with respect to 𝑁 and 𝑁 − 𝑁0. The
highest computational time corresponds to Field_5 and Work_5, that require a long plan and
detecting of collisions between movable objects. In TAMP, the practical size of the Factored-
NLPs is 𝑂(𝑛2𝐾) (where 𝐾 is the length of the action sequence, and 𝑛 is the number of
objects and robots). The domains are modelled using a small set (< 20) of different types of
nonlinear constraints (e.g., Fig. 9.3).

5.8.3. Ablation Study

– Analysis of the relaxations: FNPP_t detects conflicts of the form ⟨𝑠𝑘 , . . . , 𝑠𝑘+𝑙⟩, while
FNPP_tr checks relaxations to generate smaller conflicts ⟨𝑝𝑘 , . . . , 𝑝𝑘+𝑙⟩. Small conflicts
lead to more aggressive pruning of task plans and are essential to solve the harder
problems (the number of solved problems is 5 versus 13 out of 15). After an ablation
study of each relaxation, we observe that the Removal of trajectories and the Removal of
collision constraints are the most informative relaxations.

– Analysis of the convergence heuristic: The results show that the convergence heuristic is
important in problems that require reasoning about the collisions between movable
objects, e.g., when the robot must move one object before placing another to avoid a
collision. In this case, the relaxations are not informative, while the convergence point
of the optimizer in these infeasible problems usually indicates which objects are in
collision. FNPP_tr solves 13 out of 15, and FNPP_trn solves 15 out of 15.

– Analysis of the database of feasible graphs: FNPP_trng reduces the number of solved NLPs,
from a total average of 1673 to 1508, but there is no improvement in computational
time. We conjecture that the database approach will provide higher benefits in a
setting where solving the NLPs requires more time.

5.8.4. Scalability

We conduct two additional experiments in the Laboratory scenario to explicitly evaluate the
scalability of the method when increasing the number of blocks to be stacked (from 4 to 32)
and the number of movable obstacles on a cluttered table (from 1 to 6).

80

5.8. Experimental Results

Figure 5.7.: Three scenarios in the real world evaluation. Left: Hanoi-Tower. Center: Tower.
Right: Obstacles-Tower.

Experimentally, the running time of the Factored-NLP Planner scales polynomially with the
number of objects and plan length, and the practical bottleneck is the time spent on solving
large nonlinear programs (with cubic complexity on the number of objects and linear on
the plan length).

The main weakness of our method is that the nonlinear optimizer is not guaranteed to find
a solution for a (sub)Factored-NLP even if one exists, given that the nonlinear constraints
define a non-convex optimization problem (which could break the assumption in Theo-
rem 5.1). However, the extensive experiments demonstrate that the solver is efficient and
reliable in relevant use-cases of TAMP.

5.8.5. Real-Time Planning in the Real World

We demonstrate our solver in a real-world version of the Laboratory environment (two 7-
DOF manipulators and up to 6 movable objects, see Fig. 5.8. The solver is integrated into a
Sense-Plan-Act pipeline, where we first perceive the scene with an external motion capture
system, compute a full discrete and continuous plan, and then execute the plan.

The real-world evaluation consists of three scenarios: Tower, Hanoi-Tower, and Obstacles-
Tower, for a total of 11 problems (see Fig. 5.7). The high-level goal is to build a tower of
cubes at different locations: Hanoi-Tower introduces the classical Hanoi logic constraints,
and Obstacles-Tower requires plans that first move obstacles away. The planning time differs
across problems: 2.8 s to build a tower of 6 blocks in the center of the table (12 discrete
actions), 8.8 s to remove two obstructing blocks and stack 4 blocks (12 actions), 9.4 s to build
a Hanoi Tower (12 actions), and 27.2 s to solve a problem that requires removing obstructing
blocks and transferring blocks from the left to the right side (16 actions). Recordings of
planning and execution are shown on the project webpage3.

3https://quimortiz.github.io/graphnlp/

81

https://quimortiz.github.io/graphnlp/

5. Conflict-Based Search in Factored Logic Geometric Programs

Figure 5.8.: The goal in this real-world experiment is to build the tower blue-gray-red-green in
the central spot (highlighted in yellow). The solution, computed in only 8.88 s
with our planner, requires a task plan with 12 discrete actions, moving first the
brown and yellow blocks to avoid collisions.

5.9. Limitations
Similarly to our first contribution, Diverse Planning for LGP, described in Chapter 4, our
TAMP solver shares the limitations of the underlying LGP formulation, namely the local
convergence of optimization methods, which might prevent finding a solution even if a
problem is feasible.

To address this issue, a possible solution is to store how many times a subgraph has
been found to be infeasible and use this information in a soft conflict formulation (where
infeasible subgraphs only penalize task plans) or in a probabilistic conflict formulation (see
also the discussion in Section 4.8).

From an implementation perspective, our method requires a factored-NLP formulation
where any subset of constraints can be evaluated for feasibility. This prevents the use
of off-the-shelf trajectory optimization frameworks, which often assume a non-factored,
unstructured trajectory optimization problem.

Solving large factored nonlinear programs with joint optimization can be inefficient and
is more prone to converging to infeasible local minima. A natural way to address this
issue is to combine both joint optimization and conditional constrained sampling within a
single solver, bridging the gap between sample-based and optimization-based approaches

82

5.10. Conclusion

to TAMP. A foundational first step in this direction is presented in the second part of the
thesis (Chapters 6 and 7), where we analyze how to design TAMP solvers that automatically
select between sampling and optimization operations.

5.10. Conclusion
We present a solver that combines nonlinear optimization and PDDL planning for the joint
optimization of discrete and continuous variables in robotic planning. The key contribution
is the novel bidirectional interface between the task plan and the continuous constraints,
realized through the detection of infeasible subgraphs and a reformulation to inform the
task planner about subgraph infeasibility. The problem formulation is formalized as PNTC,
which extends classical planning with nonlinear transition constraints.

Our experiments in Task and Motion Planning show that the algorithm is faster and more
scalable than the Multi-Bound Tree search for LGP, while maintaining generality and using
the same input information. These results are further validated in real-world experiments,
where our solver generates plans for two 7-DOF robots and six objects in a few seconds.

In this chapter, we formalize the factored structure of trajectory optimization problems
first presented in Chapter 3 in an illustrative manner. Besides planning, this structure is
beneficial for reasoning about computational operations (see Chapter 6) and learning (see
Chapters 8 and 9).

The structure of the Factored-NLPs in Chapters 6 and 9 is slightly different, as these methods
use minimal representations, compressing several variables that are constant into a single
variable. This results in a more compact representation but obscures the clear temporal
structure presented here. On the other hand, the Factored-NLPs in Chapter 9 are built
using the same formalization of Planning with Nonlinear Transition Constraints but with
a redundant representation of the continuous state, which allows for better generalization
across different task plans when using graph neural networks.

83

Part II.

Meta-Solvers: Adaptive
Combination of Sampling and

Optimization Methods

85

Chapter6
Learning Optimal Sampling Sequences for

Robotic Manipulation

6.1. Introduction
A core component of Task and Motion Planning (TAMP) is generating the keyframe con-
figurations that fulfil the geometric and physical constraints of a fixed task plan. The
sequence of keyframe configurations is often computed through either joint optimization
or a predetermined series of sampling operations. However, both naïve sequential condi-
tional sampling of individual variables and full joint optimization of all variables at once
can be highly inefficient and non-robust, depending on the geometric environment. As an
example, consider the keyframes for the task plan pick-handover-place as shown in Fig. 6.1,
where obstacles, kinematic, and grasp constraints pose challenges for both sampling and
optimization methods.

In this chapter1, we present a novel algorithm that learns how to break a factored nonlinear
program into smaller problems to generate solutions more efficiently.

Our method relies on a factored representation of the feasibility problems and utilizes
Monte-Carlo Tree Search to learn assignment orders for the variables, with the aim of
minimizing the computation time to generate feasible full samples. As an online learning
algorithm, Monte-Carlo Tree Search is most valuable when multiple diverse solutions must
be generated within a fixed computational budget, rather than seeking a single solution. The
sparse factored representation of the nonlinear program, as presented in Chapter 3, together

1This chapter is based on the publication: Ortiz-Haro, J., Hartmann, V. N., Oguz, O. S., and Toussaint, M.
(2021). Learning Efficient Constraint Graph Sampling for Robotic Sequential Manipulation. IEEE International
Conference on Robotics and Automation (ICRA) (pp. 4606-4612).

87

6. Learning Optimal Sampling Sequences for Robotic Manipulation

Figure 6.1.: A sequence of keyframes in the Handover problem. The fixed task plan is to
move the green box to the target location (red) by performing an intermediate
handover. Robot 𝑄 picks the box (top-right) and hands it to robot 𝑊 (bottom-
left) to place it in the goal position (bottom-right).

with local information about the dimensionality of individual variables and constraints, is
used to reduce the space of possible computations.

We demonstrate that our learning method quickly converges to the best sampling strategy
for a given problem, outperforming user-defined orderings or fully joint optimization, while
also providing higher sample diversity.

This work is a first step towards meta-solvers for TAMP, where the ultimate goal is to
develop a flexible TAMP solver that automatically selects between sequential sampling and
joint optimization to compute robot motions, while also balancing the search in the discrete
and continuous levels of the TAMP problem.

To this end, in this chapter we first consider the subproblem of generating keyframes
for a fixed high-level manipulation plan. Though not encompassing the entire TAMP
problem, this is a vital component, as keyframes are later used as waypoints for subsequent
trajectory optimization or sampling-based motion planning algorithms. Especially, this
setting already reveals the complex decision-making and infrastructure required to choose
between sequential sampling or joint optimization operations.

In the following Chapter 7, we extend some of the ideas and techniques presented here
to address the full TAMP problem, where the high-level task plan is not fixed, but also
optimized.

6.2. Related Work
Problem decomposition and constraint satisfaction In continuous optimization, decom-
positions utilizing the underlying problem structure can enhance the performance of al-

88

6.3. Sampling Sequences in the Pick and Place Task Plan

gorithms both theoretically and practically [Dantzig and Wolfe, 1960, Benders, 1962, Boyd
et al., 2011, Bertsekas, 1979].

A constraint satisfaction problem (CSP) [Rossi et al., 2006] reveals a graph dependency
structure between variables and constraints and often presumes finite discrete domains
for each variable. Algorithms solving CSPs can exploit the graph structure, for example,
identifying connected components or trees, to efficiently assign variables [Mouhoub and
Jafari, 2011]. There is growing interest in sampling solutions that satisfy CSPs [Dechter
et al., 2002, Gogate and Dechter, 2006, Ermon et al., 2012]. Generating multiple solutions to
the problem at hand enhances the applicability of these methods in scenarios where some
constraints cannot be modeled or are evaluated only after the fact [Danna et al., 2007].

In robotics applications, such as [Driess et al., 2019, Toussaint and Lopes, 2017, Tonneau
et al., 2018, Orthey et al., 2018, Hartmann et al., 2020] among many others, complex nonlinear
problems are frequently decomposed into a sequence of simpler subproblems. The solutions
to the simpler problems are then used to guide optimization and sampling methods toward
the solution of the comprehensive problem.

Meta-decision processes The optimization of computational operations is directly re-
lated to optimal metareasoning [Russell and Wefald, 1991]. Metareasoning has varied
applications in heuristic search [O’Ceallaigh and Ruml, 2015, Lieder et al., 2014, Zilberstein,
2008, Karpas et al., 2018], as well as in other resource-limited planning processes [Bratman
et al., 1988, Boddy and Dean, 1989]. More recently, metareasoning has been applied to
reinforcement learning [Pascanu et al., 2017], temporal planning [Cashmore et al., 2018],
and path planning [Mandalika et al., 2019].

In our work, we employ bandit algorithms [Auer et al., 2002, Kocsis and Szepesvári, 2006]
to deliberate on the sequence of computational operations for generating solutions to a
nonlinear program, where the decisions we make concern the selection of which variables
to compute next.

6.3. Sampling Sequences in the Pick and Place Task Plan
Consider the problem of computing the keyframe configurations for a Pick and Place task
plan, defined by three vector variables: the robot configuration for picking and placing the
object, and the relative transformation between the gripper and the object, Fig. 6.2a.

Some potential sampling sequences to generate a full solution are: (i) optimize all variables
jointly, (ii) sample the relative transformation first, then compute the robot configurations,
or (iii) compute the pick configuration and the relative transformation jointly first, followed
by the place configuration.

89

6. Learning Optimal Sampling Sequences for Robotic Manipulation

t
t

q1
q2

(a) Visual representation of the Pick and Place problem. Left image shows the pick keyframe
and right image shows the place keyframe. Variables are the robot configuration when
picking 𝑞1, the robot configuration when placing 𝑞2, and the relative transformation
between the gripper and the object 𝑡, which is kept constant in both keyframes because
the grasp is stable.

𝑡 , 𝑞1 , 𝑞2
𝑡 𝑡 , 𝑞1 𝑡 , 𝑞2

𝑡 , 𝑞1 , 𝑞2
𝑡 , 𝑞1 𝑡 , 𝑞2

𝑡 , 𝑞1 , 𝑞2𝑡 , 𝑞1 , 𝑞2

𝑡 , 𝑞1 , 𝑞2

(b) Possible sampling sequences for solving the Pick and Place problem.

Figure 6.2.: The Pick and Place task plan.

All possible sequences of sampling operations can be represented as a tree, where each
node indicates the subset of variables that have been computed, and each edge denotes
a sampling operation. We illustrate the sampling tree for the Pick and Place task plan in
Fig. 6.2b. For clarity, we omit sampling operations that have zero probability of success, a
process detailed later in Section 6.5.2, resulting in five possible sampling sequences.

The efficacy of each strategy depends on the computational time of the individual opera-
tions, their success rates, and the probability of feasibility of subsequent sampling steps,
since often partial assignments are not viable for subsequent steps. For example, a valid
relative transformation between the gripper and the object might not permit an inverse
kinematics solution due to collisions or the robot’s reachability limits.

90

6.4. Sequential Sampling in Factored-NLPs as a Markov Decision Process

𝑡

𝑞1 𝑞2

KinKin

Grasp

(a) Pick and Place.

𝑝𝑡𝑞 𝑡𝑤

𝑞1 𝑞2 𝑤2 𝑤3

Kin KinKin Kin

Grasp Grasp

(b) Handover.

𝑝𝑡𝑞 𝑎1

𝑞1 𝑞2 𝑞3 𝑞4 𝑞5𝑡′𝑞

Kin KinKin KinKin

Position
Grasp

Grasp

Grasp

(c) Banana.

Figure 6.3.: Factored-NLPs of the three task plans considered in this chapter. Circles are
variables and squares are constraints. Brown squares represent collision con-
straints. See the main text and Chapter 3 for a description of the variables and
constraints. Pick and Place is used to illustrate and analyze different sampling
sequences. The more complex Handover and Banana tasks are used to evaluate
our method.

6.4. Sequential Sampling in Factored-NLPs as a Markov
Decision Process

In this chapter, we present a framework to learn the optimal strategy for generating multiple
diverse solutions for a Factored-NLP (Section 3.1), where optimal is defined as maximizing
the number of diverse solutions found within a fixed computational time.

The Factored-NLPs of the three manipulation tasks considered in this chapter are shown
in Fig. 6.3. Variables 𝑞 denote the configuration of the robot, with the subscript indicating
different time-steps. There are two types of variables for the configuration of objects:
variables 𝑝 denote the absolute positions of objects, and 𝑡 represents relative transformations
with respect to the robot gripper. In Handover (Fig. 6.1), the configurations for the second
robot are denoted with 𝑤. In Banana (Fig. 6.4), 𝑡 represents the grasp of the box, and 𝑎

represents the grasp of the banana. The meaning of each constraint is explained in detail
in Chapter 3.

91

6. Learning Optimal Sampling Sequences for Robotic Manipulation

Note that the Factored-NLPs used in this chapter have some differences compared to the
ones presented in Chapters 3 and 5. First, we only consider the keyframes of a task plan
and, therefore, do not include variables to represent trajectories. Second, we use here a
more compact representation of the optimization problem, where all variables that are
constrained to be fixed are removed, and consecutive free variables that are constrained
to be equal are condensed into a single variable – resulting in a less structured and more
problem-specific representation.

Given a Factored-NLP with a set of 𝑁 variables 𝑋 = {𝑥1 , . . . , 𝑥𝑁 }, 𝑥𝑖 ∈ R𝑛𝑖 , and constraints
Φ = {𝜙1 , . . . , 𝜙𝐿}, we first observe that a complete value assignment to all the variables in
𝑋 can be computed in different ways: variables could be assigned jointly, one by one, or
following any user-defined order.

To formalize this, we define an assignment state 𝑤 ∈ 𝑊 to indicate the set of variables
of 𝑋 that have been assigned. The set of all possible assignment states 𝑊 is the power
set 𝑃({1, . . . , 𝑁}), i.e., the set of all subsets of {1, . . . , 𝑁}. For instance, an assignment
state 𝑤′ = {1, 2, 3} means that values have been assigned to the variables 𝑥1 , 𝑥2 , and 𝑥3.
Conversely, 𝑥𝑤 denotes the subset of variables in 𝑋 indicated by 𝑤, e.g., 𝑥𝑤′ = {𝑥1 , 𝑥2 , 𝑥3}.

Hence, any full assignment for all 𝑥𝑖 can be computed following a sequence of assignment
states 𝐻 =

(
𝑤0 , 𝑤1 , . . . , 𝑤𝑔

)
, where 𝑤𝑖 ⊂ 𝑤𝑖+1, and 𝑤0 = {}, 𝑤𝑔 = 𝑊 . For any given step 𝑖,

the sequence up to that point is represented as 𝐻𝑖 = (𝑤0 , . . . , 𝑤𝑖).

A transition 𝑤𝑖 → 𝑤 𝑗 in a sequence implies a computational operation

𝑥𝑤 𝑗
= 𝑜𝑤𝑖 ,𝑤 𝑗

(𝑥𝑤𝑖) , (6.1)

that assigns numerical values to the variables indexed in 𝑤 𝑗 \ 𝑤𝑖 , conditioned on the given
values in 𝑥𝑤𝑖 , which are kept fixed. If the compute operation is successful, the new assign-
ment state is 𝑤 𝑗 , and the value for all computed variables so far is 𝑥𝑤 𝑗

(note that 𝑥𝑤 𝑗
also

includes the values of 𝑥𝑤𝑖 for the variables in 𝑤𝑖).

The set 𝒴(𝑤𝑖) = {𝑤 𝑗 ∈ 𝑊 | 𝑤𝑖 ⊂ 𝑤 𝑗} denotes the assignment states that can be reached
with a valid transition from 𝑤𝑖 . The computational operations are implemented either with
direct conditional sampling or using optimization methods initialized with a randomized
guess. For instance, in the Pick and Place problem presented in the introduction, examples
of such transitions include generating 6-DOF grasps or solving inverse kinematics (i.e.,
computing the robot joint values for a given end-effector position).

Algorithm 6.1 shows how to generate solutions from a Factored-NLP by choosing a valid
transition in assignment space and executing the corresponding compute operation at each
step. The performance of the algorithm depends heavily on how transitions are selected
(our method described in Section 6.5.1 is in orange).

92

6.4. Sequential Sampling in Factored-NLPs as a Markov Decision Process

Each transition𝑤𝑖 → 𝑤 𝑗 is a conditional sampling operation, which generates samples with
an unknown but defined conditional probability density 𝑝𝑤 𝑗 |𝑤𝑖 (𝑥𝑤 𝑗

|𝑥𝑤𝑖), defined on the
feasible manifold of 𝑥𝑤 𝑗

. There are no assumptions about the shape of the distribution. We
assume that the probability density is zero everywhere in case the transition conditioned
on 𝑥𝑤𝑖 is infeasible. The joint probability density is

𝑝𝐻𝑗
(𝑥𝑤 𝑗
) = 𝑝𝑤 𝑗 |𝑤𝑖 (𝑥𝑤 𝑗

|𝑥𝑤𝑖) · 𝑝𝐻𝑖
(𝑥𝑤𝑖) , (6.2)

and it depends on the history 𝐻𝑗 = (𝑤0 , . . . , 𝑤𝑖 , 𝑤 𝑗) of transitions to reach 𝑤 𝑗 .

A valid transition 𝑤𝑖 → 𝑤 𝑗 between assignment states does not always produce an assign-
ment that satisfies the associated constraints for 𝑥𝑤 𝑗

. There are two sources of infeasibility:
(i) the problem conditioned on the previously assigned variable 𝑥𝑤𝑖 could be infeasible, or
(ii) the sampling operation could fail to generate a solution even if one exists.

We can define a transition probability for transitions between the current sequence 𝐻𝑖 and
the next assignment state𝑤𝑖+1 (equivalently, between𝐻𝑖 and𝐻𝑖+1 = 𝐻𝑖∪{𝑤𝑖+1}) as follows:

𝑃𝑟 (𝐻𝑖 → 𝐻𝑖+1) = �̂�𝐻𝑖 ,𝐻𝑖+1 ·

∫
Ω𝑖 ,𝑖+1

𝑝𝐻𝑖
(𝑥𝑤𝑖) 𝑑Ω∫

Ω𝑖
𝑝𝐻𝑖
(𝑥𝑤𝑖) 𝑑Ω

, (6.3)

where Ω𝑖 is the feasible space for 𝑥𝑤𝑖 and Ω𝑖 ,𝑖+1 ⊆ Ω𝑖 is the feasible space for 𝑥𝑤𝑖 for which
a joint sample 𝑥𝑤𝑖+1 exists. In this estimate, the success rate �̂�𝐻𝑖 ,𝐻𝑖+1 ∈ (0, 1) represents
the probability that a solution satisfying the constraints will be found if one exists, which
we estimate as constant for a given transition, rather than depending on the previous
assignment 𝑥𝑤𝑖 . Note that the success rate could be low for certain transitions, while it
could be close to 1 for others.

Assignment state transition as a Markov Decision Process We can now define a Markov
Decision Process (MDP): The state space is {𝐻𝑖} ∪ {¬}, i.e., the sets of partial sequences
starting from𝑤0 plus an infeasible state¬. The action space contains the possible transitions
between sequences, i.e., adding a new assignment state. Each action has a success rate
𝑝𝑎 = 𝑃𝑟(𝐻 → 𝐻′) of reaching the new sequence as defined in (6.3), (corresponding to the
probability of generating an assignment satisfying the constraints) and a probability 1 − 𝑝𝑎
of going to the infeasible state ¬. We note that the MDP has a maximum horizon length of
𝑁 transitions, which corresponds to assigning all the variables one by one.

We use the reward structure to obtain a concept of optimality that directly relates to our
objective of maximizing the number of samples: We introduce a reward 𝑟𝑔 = 1 for reaching
the goal 𝑤𝑔 =𝑊 (namely, all variables have been correctly computed), and a stochastic cost,
i.e., a negative reward, 𝑟𝑡 on each transition, which is the compute time the transition takes.
We weigh the two costs linearly, obtaining �𝑟𝑡 + (1 − �)𝑟𝑔 with � ∈ (0, 1).

93

6. Learning Optimal Sampling Sequences for Robotic Manipulation

6.5. Choosing Computational Operations with Monte-Carlo
Tree Search

We use Monte-Carlo Tree Search (MCTS, [Browne et al., 2012]) on the previously defined
MDP to find the optimal sequence of computational operations.

MCTS incrementally builds a tree of possible transition sequences to find the most promising
one. This is achieved by randomly selecting transitions starting from the initial state 𝑤0
of the MDP, executing their corresponding conditional sampling operations, and using the
reward structure of the MDP to guide the search. Thus, in our setting, the nodes of the tree
built by the MCTS are sequences of assignment states.

The reward structure of the MDP guides the tree search algorithm to choose transitions that
have a low computational cost and a high probability of producing a full solution to the
Factored-NLP.

An estimate of the average computational cost 𝑐 = −∑ 𝑟𝑡 can be used as guidance for
choosing a suitable � = 1

𝑐+1 . In this case, the optimal solution in the MDP corresponds to
the sequence of computational operations that maximizes the number of generated samples
for the original factored nonlinear program.

6.5.1. Upper Confidence Tree (UCT)

In particular, we use the UCT algorithm [Kocsis and Szepesvári, 2006] to balance the
exploitation of known sequences with the exploration of new sequences. UCT expands the
child node 𝑧 that maximizes

𝑄𝑧 + 𝑐
√

ln𝑀𝑧

𝑚𝑧
, (6.4)

where 𝑄𝑧 is the current estimate of the expected reward of node 𝑧, 𝑀𝑧 is the number of
simulations that have evaluated the parent node, 𝑚𝑧 is the number of rollouts that have
evaluated node 𝑧, and 𝑐 is a constant chosen by the user. The estimate of the 𝑄 function
for the nodes of the tree converges as the number of rollouts increases. Hence, the UCT
algorithm incrementally builds a search tree, estimates the 𝑄 values of each transition, and
chooses actions using the upper confidence bound (6.4), leading to Algorithm 6.1.

We note that, if at least one of the sampling sequences assigns a non-zero probability density
to the entire feasible manifold, so does our algorithm, since UCT never stops exploring all
possible sequences.

94

6.5. Choosing Computational Operations with Monte-Carlo Tree Search

Algorithm 6.1 Framework to generate solutions from a Factored-NLP,
with our contributions in orange.

1: Input: Factored-NLP, compute time budget 𝑇
2: 𝐿← {} ⊲ Empty list of samples
3: while accumulated compute time 𝑡 ≤ 𝑇 do
4: feasible← True
5: 𝑤 ← 𝑤0 ⊲ Initial empty assignment state (𝑤0 = ∅)
6: 𝑥𝑤 ← 𝑥𝑤0 ⊲ Initial empty sample (𝑥𝑤0 = [])
7: while 𝑤 ≠𝑊 do
8: 𝑤′← Choose next state from𝒴(𝑤) using UCT
9: 𝑥𝑤′ , feasible, reward← 𝑜𝑤,𝑤′(𝑥𝑤) ⊲ Execute computational

operation
10: Update UCT tree with reward
11: if feasible then
12: 𝑤 ← 𝑤′

13: 𝑥𝑤 ← 𝑥′𝑤
14: else
15: break
16: end if
17: end while
18: if feasible then
19: append 𝑥𝑊 to 𝐿
20: end if
21: end while
22: Output: List of valid samples 𝐿

6.5.2. Pruning the Sampling Tree Using the Factored-NLP

Since the number of sequences and transitions grows exponentially with the dimension of
the problem (see Table 6.1), it is not possible to naively apply MCTS to the previously defined
MDP. However, most real-world problems have a sparse structure that can be leveraged to
significantly reduce the set of available sequences and transitions.

We provide two examples of transitions that can be pruned. Consider a Pick and Place
problem represented with the variables {𝑞1 , 𝑞2 , 𝑡}, where 𝑞1 , 𝑞2 are the robot configurations
for picking and placing, and 𝑡 is the relative transformation between the end-effector and
the object (Fig. 6.2).

– We prune 𝑞1 → (𝑞1 , 𝑡) and 𝑞2 → (𝑞2 , 𝑡). If 𝑞1 or 𝑞2 is sampled independently at
random, the probability of correctly grasping the object is zero.

– We prune 𝑡 → (𝑞1 , 𝑞2) because 𝑞1 and 𝑞2 are independent if 𝑡 is fixed (and it does not
make sense to generate 𝑞1 and 𝑞2 jointly).

95

6. Learning Optimal Sampling Sequences for Robotic Manipulation

Table 6.1.: Number of transitions between assignment states in the three evaluated task
plans, before and after transition pruning.

Variables Transitions
Complete

Transitions
after Pruning

Pruning
Ratio [%]

Pick and Place 3 19 8 57.89
Handover 7 2059 163 92.09
Banana 9 19171 534 97.21

More generally, we combine knowledge of the Factored-NLP structure with the local infor-
mation in each variable and constraint, i.e., the number of available degrees of freedom and
the number of equality constraints, to prune a transition 𝑤𝑖 → 𝑤 𝑗 if it fulfills any of the two
criteria:

Zero probability of success In general, the probability of sampling variables from the
ambient space such that the equality constraints are fulfilled is zero. Hence, a transition
can be pruned if the number of new, linearly independent, equality constraints exceeds the
number of new degrees of freedom that are added in that transition.

Equivalence under conditional independence Given an assignment state𝑤𝑖 , two variables
in the Factored-NLP are conditionally independent if all paths that connect them contain
already assigned variables. Therefore, we delete a transition that jointly samples variables
that are conditionally independent with respect to those assigned in 𝑤𝑖 . In such cases, joint
sampling means choosing an ordering for two conditionally independent processes (which
is already available as alternative valid transitions).

In Table 6.1, we show how the number of transitions is reduced in the three scenarios
evaluated in this chapter.

6.5.3. Family of Problems and Tree Warm Start

Obstacle and object configurations impact the computational time and the success rate of
the conditional sampling operations, potentially changing the optimal sampling sequence.
Thus, the best sampling order depends on both the Factored-NLP and the specific problem
instance.

MCTS provides a good framework to incorporate the information gathered from solutions
to similar problems as a warm start. We propose to warm-start the tree search by initializing
𝑄𝑧 of each node with the average of the 𝑄 values from previous problems, and set 𝑚𝑧 to

96

6.6. Experimental Results

Figure 6.4.: A sequence of keyframes in one instance of the Banana problem. The task plan
is to move the light brown box, climb on top of it, reach the banana, and place
it on the red configuration. The dark brown object is an obstacle.

an equivalent count visit 𝑚equiv, which models how confident we are with the warm start,
following the approach presented in [Gelly and Silver, 2007].

6.6. Experimental Results

6.6.1. Scenarios

– Handover: Two robots (7D) have to collaborate to place a box in the goal configuration.
Grasping is modeled with a two-finger gripper. Figure 6.1 shows a possible solution,
and Fig. 6.3b shows the Factored-NLP.

– Banana: The hanging ‘banana’ has to be moved to a goal position. The robot (8D) can
interact with the world using both sides of the kinematic chain as a gripper. The box
has to be moved and used as a tool to stand on to be able to reach the goal. Grasping
is modeled as ‘grasp by touch’. Fig. 6.4 shows snapshots from a solution sequence,
and Fig. 6.3c shows the Factored-NLP.

For both problems, 8 different instances (see Fig. 6.5 and Fig. 6.7) (i.e., varying obstacle
and object configurations) are evaluated2 multiple times, and unless stated otherwise,
the average results are reported in the following analyses. The different instances can
significantly impact the computation times and, thus, the optimal sampling sequence.

2Experiments are run using an Intel(R) Core(TM) i5-4200U 1.60GHz CPU.

97

6. Learning Optimal Sampling Sequences for Robotic Manipulation

Figure 6.5.: Handover scenario. The obstacles (dark brown) constrain the possible grasps and
handover positions of the robots. The optimal sampling sequence might vary
in different scenarios, based on the number, size, and position of the obstacles.

6.6.2. Computational Operations

One motivation for this work is that both the computation time and the success rate of
conditional sampling operations must be considered to design efficient algorithms. As an
illustrative example, we report the average computational time and success rate of some
sampling operations in the first instance of the Handover scenario: relative transformation
(0.68 ms, 100 %), inverse kinematics (1.55 ms, 87 %), grasp of a fixed object (5.8 ms, 55 %),
pick and place (54 ms, 46 %), and handover keyframe (68 ms, 44 %).

In practice, our algorithm finds the optimal balance between (i) choosing simple operations
which are fast and have a high success rate but can potentially induce infeasibility in future
assignments, and (ii) optimizing variables jointly, which considers joint feasibility but is
slower and often has a lower success rate.

The conditional sampling operations are implemented by randomizing the initial guess of
a nonlinear solver without a cost term and are solved using the Augmented Lagrangian al-
gorithm. The initial guess covers the entire ambient space of the current partial assignment,
ensuring that all possible partial solutions have a non-zero probability (see Section 6.4).

6.6.3. Number of Samples and Approximate Coverage

We compare the number of samples generated by our algorithms, Tree and Tree-warm,
against Expert-sequences and Rand. Tree is our MCTS-based meta-solver (see Algorithm 6.1),
including the pruning (see Section 6.5.2) and starting from an empty tree. Tree-warm is
the same algorithm (also with pruning) but with a warm start using the average reward
from previous problems (see Section 6.5.3). Expert-sequences are fixed sampling orders
that represent different user-defined strategies (see Table 6.2). Rand selects computational
operations at random, without learning.

98

6.6. Experimental Results

0 50 100 150
time [s]

0.0

0.5

1.0
n

or
m

al
iz

ed
sa

m
p

le
ra

te

tree

tree-warm

exp1

exp2

exp3

rand

(a) Handover: Sample rate.

0 50 100 150
time [s]

tree

tree-warm

exp1

exp2

exp3

rand

(b) Banana: Sample rate.

 q1 q2 p tq q4 q5 a1 t’q q3 q1 q2 tq w3 w2 tw p

(c) Coverage. Left: Handover. Right: Banana.

Figure 6.6.: Sampling rates and approximated projected coverage (normalized by Tree), av-
eraged over all problems instances.

Number of samples We plot the evolution of the sampling rate (including the MCTS
overhead for our algorithms) in our two scenarios in Figs. 6.6a and 6.6b. Asymptotically,
Tree outperforms all Experts, which exhibit disparate performance across the two problems.
Due to the exploration of possible sampling sequences, initially, the sample rate of Tree
is lower compared to some of the Expert-sequences. However, Tree-warm mitigates this
issue due to the warm start and improves its sample rate over time. We also note that the
Expert-sequences are more sensitive to the different problem instances.

The final sample rates achieved by Tree-warm in the different instances range between 7− 15
samples/s in the Handover scenario and 5 − 10 samples/s in the Banana scenario. Examples
of some of the sequences discovered by Tree are shown in Table 6.2.

99

6. Learning Optimal Sampling Sequences for Robotic Manipulation

Table 6.2.: Sampling sequences in Banana and Handover scenarios. Sampling order is left to
right, each tuple (.) denotes joint sampling of the subset.

Expert 1
Joint Opt.

Handover (𝑞1 , 𝑞2 , 𝑡𝑞 , 𝑤3 , 𝑤2 , 𝑡𝑤 , 𝑝)
Banana (𝑞1 , 𝑞2 , 𝑡𝑞 , 𝑝, 𝑞3 , 𝑡′𝑞 , 𝑞4 , 𝑞5 , 𝑎1)

Expert 2
One-by-one

Handover 𝑝, 𝑡𝑞 , 𝑡𝑤 , 𝑞1 , 𝑞2 , 𝑤2 , 𝑤3
Banana 𝑝, 𝑡𝑞 , 𝑎1 , 𝑡

′
𝑞 , 𝑞1 , 𝑞2 , 𝑞3 , 𝑞4 , 𝑞5

Expert 3
Sequential Keyframes

Handover (𝑞1 , 𝑡𝑞), (𝑞2 , 𝑝, 𝑤2 , 𝑡𝑤), (𝑤3)
Banana (𝑞1 , 𝑡𝑞), (𝑞2 , 𝑝), (𝑞3 , 𝑡′𝑞), (𝑞4 , 𝑎1), 𝑞5

Tree
Best found Sequence
(Examples)

Handover 𝑡𝑤 , 𝑡𝑞 , 𝑞1 , 𝑤3 , (𝑞2 , 𝑝), 𝑤2
(𝑤3 , 𝑡𝑤), (𝑤2 , 𝑝), (𝑞2 , 𝑡𝑞), 𝑞1

Banana (𝑞1 , 𝑡𝑞), (𝑞2 , 𝑝), (𝑞4 , 𝑞5 , 𝑎1 , 𝑡
′
𝑞), 𝑞3

(𝑝, 𝑞5 , 𝑎1 , 𝑡
′
𝑞),𝑞3,(𝑞1 , 𝑡𝑞), 𝑞2 , 𝑞4

Approximate coverage We evaluate the coverage of the solution manifold achieved by
our algorithms Tree and Tree-warm, which should achieve good coverage (i.e., a diverse set
of samples) by design. Since the coverage of a nonlinear manifold embedded in a high-
dimensional space cannot be evaluated reliably with a relatively low number of samples,
we evaluate the projected coverage as a proxy measure: We project the full samples onto each
variable of the sequence and compare the coverage in each of these subspaces. We discretize
these subspaces and count the number of occupied cells, i.e., cells that are occupied by
multiple samples are only counted once. Although an approximation, it provides useful
and interpretable information about which parts of the solution-manifold are covered.

The results shown in Fig. 6.6c are normalized by the number of occupied cells in Tree. While
some Experts achieve better coverage on a subset of variables, coverage by Tree and Tree-warm
mostly outperform the others. This confirms our hypothesis that, with the correct design
and implementation of the sampling operations, maximizing the number of samples is a
good heuristic to maximize the coverage.

6.7. Limitations
A limitation of our framework is that the algorithm must explore inefficient computations
and needs some time to converge to the best sampling order, which could prevent usage
when the computational budget is limited. As demonstrated, this limitation is alleviated by
warm-starting the algorithm using information from previous runs. The chosen problem
setting of learning to generate solutions from online experience might not be relevant when
the goal is to generate a single or a few valid solutions as quickly as possible. In this case,
supervised learning methods that learn from a dataset of problems solved offline could be
a better fit (see Part III of this thesis).

100

6.8. Conclusion

Figure 6.7.: Banana Scenario: Initial and goal configurations of the banana (shown in yellow
and red) constrain the placement of the box (light brown). The dark brown box
is a fixed obstacle.

In this chapter, we have addressed a subproblem of TAMP, in which the task plan is fixed.
Integrating our ideas to combine sampling and optimization into a complete TAMP solver
is challenging, as both the number of possible sampling sequences and the number of can-
didate task plans grow exponentially with the number of variables. The full TAMP problem
requires an informed balance between the compute effort spent across both different task
plans and different compute operations. In Chapter 7, we present a meta-solver to address
the complete TAMP problem but, limit the number of allowed sampling operations to keep
the search space (and the implementation) manageable.

6.8. Conclusion
We have proposed a meta-algorithm to reason about optimal decompositions of factored
nonlinear programs in robotic manipulation planning. Our algorithm chooses the compu-
tational decisions, i.e., which subset of variables to conditionally sample next, to maximize
the number of generated samples in a fixed computational time.

We use the method to efficiently generate a diverse set of samples for keyframes in robotic
manipulation, which is an essential component in any solver for TAMP problems or multi-
modal motion planning.

Our framework naturally allows us to also include cost factors in the Factored-NLP. How-
ever, we neglect cost terms because our approach is tailored to provide a diverse set of
feasible samples that can be used in higher-level optimization or motion planning, where
the diversity and uniform coverage of samples is an essential ingredient for ensuring com-
pleteness.

101

6. Learning Optimal Sampling Sequences for Robotic Manipulation

The same problem setting used in this chapter, generating diverse samples from constraint
manifolds, will be revisited in Chapter 8 through the perspective of deep learning. In
Chapter 8, deep generative models are trained with a dataset of solutions to similar problems
and are used at runtime to compute solutions for new problems faster. In contrast to the
meta-solver presented in this chapter, the neural models require that a user defines a fixed
sequence of sampling operations beforehand.

102

Chapter7
Towards Meta-Solvers for Task and Motion

Planning

7.1. Introduction
In this chapter1, we present a meta-solver for the comprehensive TAMP problem. Our
meta-solver is a search algorithm that combines optimization and sampling computations
to solve TAMP problems, guided by heuristics from the discrete task abstraction.

While most TAMP planners use roughly equivalent problem formulations, they differ signif-
icantly in A) how they interleave and combine search across task and motion, and B) the
computational methods used to compute the continuous variables.

In particular, all TAMP planners use a predefined set of fixed computation operations to
compute low-level motion, leading to disparate performance depending on the problem
at hand. Solvers that rely on sampling partial solutions are inefficient when there are
long-term dependencies in the low-level motion. Conversely, solvers that use joint nonlin-
ear optimization are inefficient if the problem is highly decomposable and fail when the
optimization problem has infeasible local optima.

In contrast, our meta-solver not only combines search at both the continuous and discrete
levels but also reasons about the best way to solve the continuous level, deciding which com-
putation operations to perform and in what order. These decisions are crucial to solving
problems efficiently because the time spent on motion planning is often the biggest bot-
tleneck for all TAMP solvers. Depending on the methods used to compute the motion,
running time can vary from milliseconds to several minutes.

1We plan to extend and submit the content of this chapter to a robotics or planning conference, for instance, IROS,
ICRA, or ICAPS. This research has been conducted in collaboration with Erez Karpas and Marc Toussaint.

103

7. Towards Meta-Solvers for Task and Motion Planning

This work is primarily inspired by our previous studies on meta-solvers for computing the
keyframes for a fixed manipulation plan (Chapter 6), our novel factored TAMP formulation
and solvers (Chapter 5), and the sampling-based TAMP solver PDDLStream [Garrett et al.,
2020]. In addition to the formulation and algorithmic tools from Chapter 5, we now include
conditional sampling of keyframes and use a similar mechanism to that of PDDLStream to
order and prioritize computations.

Our approach represents a first step toward bridging the gap between optimization and
sample-based approaches to TAMP, blending and converging towards the best strategy
based on the problem at hand.

7.2. Related Work
An extensive discussion of related work in Task and Motion Planning is provided in Sec-
tion 2.4. In contrast to state-of-the-art solvers for TAMP that use either only sampling-based
or only optimization-based methods by design, our TAMP meta-solver can adaptively
choose between sampling or optimization computations.

PDDLStream has been extended to include optimization operations in the Ph.D. thesis [Gar-
rett, 2021] by merging some sequences of samplers into a larger optimization problem,
resulting in a hybrid sampling and optimization algorithm. However, the algorithm does
not explicitly decide when to use sampling or optimization to compute the same set of
continuous variables. In contrast, our meta-solver explicitly reasons about which method
is more efficient for generating the same set of continuous variables.

To merge sampling and optimization, we define a computational state and reason directly
about which computational decisions to take next. Our approach is inspired by classical
work on meta-reasoning and decision-making [Russell and Wefald, 1991], and its successful
application in search, planning, and scheduling, for example, [Seipp et al., 2012, Shperberg
et al., 2019, O’Ceallaigh and Ruml, 2015, Zilberstein, 2008, Lieder et al., 2014].

Allowing both sampling and optimization operations in our algorithm defines a search
problem with an infinite branching factor to solve the original TAMP problem. Such
problems can be addressed by Partial Expansion A* [Felner et al., 2012], Iterative Broadening
[Ginsberg and Harvey, 1992], or Iterative Deepening [Korf, 1985]. Instead, we choose to
explore a computational space with a simple A*-like algorithm that combines heuristic
search with a computational level to widen the tree incrementally, similarly to PDDLStream
[Garrett et al., 2020]. Interestingly, different notions of cost, heuristic, and search algorithms
in the computational space result in different TAMP meta-solvers.

Recently, Effort Level Search in Infinite Completion Trees analyzed a computational decision
process with infinite branching in the context of TAMP [Toussaint et al., 2023]. The algo-

104

7.3. The Gap Between Sampling and Optimization Approaches

rithm decides where to allocate compute time given a fixed set of possible computational
decisions to address each component of the TAMP problem (enumerating task plans, com-
puting keyframes with nonlinear optimization, computing paths with sample-based motion
planning, and optimization). However, it does not address the trade-off between choosing
conditional sampling and optimization when solving TAMP, as we do in our meta-solver.

7.3. The Gap Between Sampling and Optimization
Approaches

Within the TAMP research community, a central concern is the large number of slightly
different problem formulations, as every TAMP solver often introduces its own unique
formulation. This has made it difficult to create hybrid methods or combine ideas from
different TAMP solvers.

However, when comparing our recent optimization-based TAMP solver (Factored-NLP
Planner, see Chapter 5) to PDDLStream, a state-of-the-art sample-based solver, one real-
izes that both formulations use very similar discrete abstractions and task planning, and
represent the motion with equivalent variables and constraints, using constraint networks
(in PDDLStream) or Factored-NLPs (in our work). Additionally, they both use discrete
task planning to guide the solver towards the goal (when using the optimistic algorithms in
PDDLStream).

The fundamental difference2 is in how the values for the constraint networks or factored
nonlinear programs are assigned. In PDDLStream, they are computed using a sequence
of predefined sampling iterations, while the Factored-NLP Planner uses joint optimization.
Both methods have advantages and disadvantages, as illustrated in Chapter 6.

Space of possible computations The trade-off between sampling and optimization has
been explored in Chapter 6 for a fixed task plan. However, in this chapter, we consider
the full TAMP problem, which also entails finding potential task plans and balancing
computational time and search effort among different candidate task plans. The focus here
is on generating an initial solution to the TAMP problem rapidly, rather than producing
multiple solutions for the keyframes of a fixed task plan.

Addressing the full TAMP problem is considerably more challenging than solving for a
fixed task plan. Therefore, in this chapter, we confine the space of possible computations.
While in Chapter 6 we considered any conceivable sequence of conditional sampling or
optimization operations, here we impose the following limitations:

2Additional differences, though not analyzed in this chapter, include whether solvers use a conflict-based ap-
proach and whether they reuse partial solutions to compute the final solution.

105

7. Towards Meta-Solvers for Task and Motion Planning

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

�̃�1 �̃�2

Grasp

Pose

Kin

Kin

Equal Equal
Ref Ref

→

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

𝑥1 �̃�2

Grasp

Pose

Kin

Kin

Equal Equal
Ref Ref

→

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

𝑥1 𝑥2

Grasp

Pose

Kin

Kin

Equal Equal
Ref Ref

(a) Pick and Place – Sampling.

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

�̃�1 �̃�2

Grasp

Pose

Kin

Kin

Equal Equal
Ref Ref

→

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

𝑥1 𝑥2

Grasp

Pose

Kin

Kin

Equal Equal
Ref Ref

(b) Pick and Place – Optimization.

Figure 7.1.: Sampling and optimization approaches use different computations to generate
keyframes for the Pick and Place task plan. From left to right, transitions from
white to gray circles indicate the order in which the value of the continuous
states has been computed.

– The maximum allowed fine factorization for sampling is at the level of continuous
states, instead of individual variables. Hence, the algorithm cannot opt to compute
only a relative transformation for the grasp or placement. Instead, it must choose
between computing a single full state, e.g., the robot configuration and the grasp, or
a sequence of states, e.g., the pick and place configurations.

– Computing continuous states backward in time is prohibited. For example, in a candi-
date task plan of Pick and Place, the continuous state for the place cannot be computed
before the state for the pick (note that this was permitted in Chapter 6). Therefore,
the continuous states must be computed either jointly (using joint optimization) or
sequentially in a forward manner (first pick, then place).

With these two constraints, the available sequences of computations for a fixed Pick and
Place task plan in an environment with one robot 𝑄 and two blocks 𝐴, 𝐵 (refer to Fig. 7.2a)
are illustrated in Fig. 7.1. In this scenario, only two possible sequences exist because the

106

7.4. The TAMP Computation Tree

(a) (b)

Figure 7.2.: Two representative TAMP problems, where the goal is to place the two colored
blocks on the red table. Note that the two problems are identical at the discrete
task level, and only the geometric scene is different (because of the size of the
table and the presence of unmovable obstacles shown in color gray). Interest-
ingly, (a) is solved more efficiently with sampling-methods, while (b) is solved
better with optimization methods.

task plan of Pick and Place comprises just two steps. For a sequence of length three, the
number of possible computations is four (i.e., the number of ordered partitions).

7.4. The TAMP Computation Tree
We first define a computational state and a computation tree (i.e., a tree of computational states)
to model the various computations that can be performed while resolving TAMP problems
with optimization or sampling-based approaches. Utilizing this computation tree, we will
subsequently define a TAMP meta-solver as a particular search algorithm on the compu-
tation tree, and we will demonstrate that different TAMP solvers navigate the tree in very
diverse and ingenious ways.

Discrete-continuous states Essentially, most TAMP solvers conceptualize the TAMP prob-
lem as a hybrid planning problem in the space of discrete-continuous states (𝑠, 𝑥). Here, we
use our recent formulation, Planning with Nonlinear Transition Constraints (PNTC) (see
Chapter 5), as a point of reference. Remember that in PNTC, TAMP is framed as a hybrid
planning problem with discrete-continuous states (𝑠, 𝑥), where the initial state is (𝑠0 , 𝑥0),
and the goals are the states (𝑠𝑔 , 𝑥𝑔)with 𝑔 ⊆ 𝑠𝑔 , and where the continuous state 𝑥𝑔 satisfies
the nonlinear constraints 𝜙(𝑥𝑔 ; 𝑠𝑔).

107

7. Towards Meta-Solvers for Task and Motion Planning

A node (𝑠𝑘+1 , 𝑥𝑘+1) is a successor of (𝑠𝑘 , 𝑥𝑘) if a discrete action 𝑎𝑘+1 ∈ 𝒜(𝑠𝑘) exists such
that 𝑠𝑘+1 = succ(𝑠𝑘 , 𝑎𝑘+1), and the pair of continuous states meet the nonlinear constraints
𝜙(𝑥𝑘 , 𝑥𝑘+1; 𝑠𝑘 , 𝑠𝑘+1) set by the discrete transition 𝑠𝑘 → 𝑠𝑘+1. The vector-valued nonlinear
constraints 𝜙(𝑥𝑘 , 𝑥𝑘+1; 𝑠𝑘 , 𝑠𝑘+1) amalgamate all the nonlinear constraints defined by the
PNTC formulation {𝜙𝑏(𝑥𝑏0

𝑘
, 𝑥

𝑏1
𝑘+1)| 𝜙𝑏 ≡ Π(𝑝, �̃�),∀𝑝 ⊆ 𝑠𝑘 , �̃� ⊆ 𝑠𝑘+1}.

Chapter 5 provides an in-depth discussion on the significance of discrete states, discrete
actions, continuous states, and nonlinear constraints in the TAMP context. We recall that
in PNTC, as one continuous state corresponds to each discrete state, the continuous state
now represents the keyframe configuration and the trajectory from the preceding keyframe
(instead of a single configuration).

Computational state However, the notion of discrete-continuous states (𝑠, 𝑥) is not suf-
ficient to represent the different computational operations that can be performed while
solving TAMP problems. From an optimization perspective, the continuous state is a
free variable to be optimized later. From a sampling perspective, the continuous state is
fixed, computed with a sampling operation. Thus, it cannot model the behavior of hybrid
approaches that may combine both free continuous states to be optimized later and fixed
continuous states that have been computed.

For designing a meta-solver, we need to define a computational state, a more flexible notion
of state that represents that the continuous state can be either fixed or a free variable to be
optimized later. The computational state has this designation because it models the state
of computations: which parts of the problem have been computed and which have not,
instead of the state of the world.

Taking the PNTC formulation and notation as a reference (Section 5.3), we define a compu-
tational state 𝑁 as a 4-tuple (𝑠, 𝑥, �̃� ,Φ)where,

– 𝑠 ∈ 𝒮 is a discrete state. It represents the current discrete state of the world.

– 𝑥 ∈ 𝒳 is a fixed continuous state.

– �̃� is a set of free continuous states �̃�𝑘 that have not been computed yet.

– Φ is a set of nonlinear constraints 𝜙𝑏 on the free states, which should be satisfied when
computing valid values for the free states.

Importantly, in a node 𝑁 , the fixed continuous state 𝑥 can correspond to the discrete state
of a previous step, instead of the discrete state 𝑠 of the current one (see also Fig. 7.3 that
appears later).

Note that here we do not consider the fine factorization of the continuous states 𝑥 ∈ 𝒳 into
a set of variables {𝑥 𝑖 ∈ 𝒳 𝑖}, and we introduce the notation �̃� to make an explicit distinction
between states that have been already assigned, and those which have not.

108

7.4. The TAMP Computation Tree

The initial computational state is 𝑁0 = (𝑠0 , 𝑥0 , ∅, ∅), i.e., a fixed continuous state 𝑥0 and a
fixed discrete state 𝑠0 that represents the initial continuous-discrete state of the world, and
no free states or nonlinear constraints.

Expansions in a computation tree A computational state𝑁 = (𝑠, 𝑥, �̃� ,Φ) can be expanded
in two different ways:

1. A discrete expansion with a discrete action 𝑎 that is applicable to the current discrete
state 𝑠,

Discrete_Expansion(𝑁, 𝑎) → 𝑁′ = (𝑠′, 𝑥, �̃�′,Φ′), (7.1)

where 𝑠′ = succ(𝑠, 𝑎), �̃�′ = �̃� ∪ �̃�′, and Φ′ = Φ ∪ 𝜙′.

Here, �̃�′ and 𝜙′ are the new free continuous states and the set of nonlinear constraints
that represent the motion corresponding to applying the discrete action 𝑎 to the
discrete state 𝑠. The constraints can depend on the state from the last time step, which
can be either fixed or free.

Therefore, the discrete expansion changes the discrete state, does not change the fixed
continuous state, and introduces new free states or constraints.

The discrete expansion is deterministic, and there is a finite number of possible
expansions for each node.

2. A numeric expansion that assigns values to the set of free states �̃�, subject to the
constraints Φ.

Numeric_Expansion(𝑁) → 𝑁′ = (𝑠, 𝑥′, ∅, ∅) or FAIL, (7.2)

where 𝑥′ is the value assignment for the last free state in �̃�. The values for all the
continuous states in the sequence are stored, but only the last fixed state is required
for future expansions.

The numeric expansion is stochastic, can be executed infinitely, and there could be
zero, a finite, or an infinite number of valid possible expansions for each node. If the
constraints are not satisfiable, as is often the case in task and motion planning, the
expansion fails, resulting in a dead state FAIL.

Usually, nonlinear constraints define a manifold of possible solutions, resulting in an
infinite branching factor for the numeric expansion.

Even if a feasible expansion exists, we cannot guarantee that one attempt to compute
values will succeed because the optimization solver might fail to find a solution.
However, it could be that by repeating the operation, we can expand the node correctly.
This stochastic behavior is implemented using randomized initialization and cost

109

7. Towards Meta-Solvers for Task and Motion Planning

functions for nonlinear optimization, randomized constraint sampling, or sample-
based motion planning.

Why does it make sense to have a notion of free states? First, free states in a computational
state will be optimized later, allowing us to consider the joint nonlinear constraints that de-
pend on the variables of the next step (e.g., 𝜙(𝑥1 , 𝑥2; 𝑠1 , 𝑠2)). As demonstrated by the success
of optimization-based TAMP solvers, it is often beneficial to optimize the continuous vari-
ables jointly, rather than sequentially. Moreover, numeric expansions are computationally
expensive, and it may be advantageous to delay them as much as possible.

A computation tree is a tree whose nodes are computational states, and whose edges are
discrete or numeric expansions. In the context of TAMP, we denote the computation tree
as the TAMP Computation Tree. To solve the original TAMP problem using the TAMP
Computation Tree, the goal is to find a valid sequence of computational states𝑁0 , 𝑁1 , . . . , 𝑁𝐾

such that𝑁𝐾 = (𝑠𝐾 , 𝑥𝐾 , ∅, ∅) is a goal state, which means reaching a discrete goal state 𝑠𝐾 ⊇ 𝑔,
with a continuous state 𝑥𝐾 that satisfies the nonlinear constraints 𝜙(𝑥𝐾 ; 𝑠𝐾) = 0, and without
any free states or remaining constraints.

7.5. An Example of a TAMP Computation Tree and
Computational States

In Fig. 7.3, we show an instance of a TAMP Computation Tree for a TAMP problem with
one robot, 𝑄, two movable objects, 𝐴 and 𝐵, and a red table.

The initial state 𝑥0 is shown in Fig. 7.4a, and the initial discrete state is
𝑠0 = [parent_A = A_init, parent_B = B_init, gripper_Q = free]. Given the initial state
𝑁0 = (𝑠0 , 𝑥0 , {}, {}), we can apply a discrete action 𝑎1 = pick A with Q from A_init to
obtain a new node 𝑁1 = (𝑠1 , 𝑥0 , �̃�1 ,Φ), with Φ = {𝜙(𝑥0 , �̃�1; 𝑠0 , 𝑠1)} and 𝑠1 = succ(𝑠0 , 𝑎1).

Thus, we now have a different discrete state that assumes the discrete action will be applied
successfully. However, the continuous state has not been assigned and remains as a free
state subject to constraints. Similarly, we can extend the initial state with another valid
action 𝑎′1 = pick B with Q from B_init, resulting in another state 𝑁2 with a set of different
nonlinear constraints Φ′.

In the computational state 𝑁1 = (𝑠1 , 𝑥0 , {�̃�1}, {𝜙(𝑥0 , �̃�1; 𝑠0 , 𝑠1)}), we can decide to compute
the free variables. Specifically, we want to assign values to �̃�1 subject to the constraints
𝜙(𝑥0 , �̃�1; 𝑠0 , 𝑠1). If this operation succeeds, it results in the state 𝑁3 = (𝑠1 , 𝑥1 , {}, {}). Now,
the last continuous state is 𝑥1, and both the set of free states and constraints are empty. If
the assignment process fails, a dead child node is created.

110

7.5. An Example of a TAMP Computation Tree and Computational States

𝑁0 : 𝑠0 , 𝑥0 , {}, {}

𝑁1 : 𝑠1 , 𝑥0 , {�̃�1},Φ 𝑁2 : 𝑠′1 , 𝑥0 , {�̃�1},Φ′

𝑁3 : 𝑠1 , 𝑥1 , {}, {} 𝑁4 : 𝑠2 , 𝑥0 , {�̃�1 , �̃�2},Φ′′

𝑁5 : 𝑠2 , 𝑥2 , {}, {} 𝑁6 : 𝑠2 , 𝑥′2 , {}, {}𝑁7 : 𝑠2 , 𝑥1 , {�̃�2},Φ′′′

(�̃�1), 0

(�̃�1 , �̃�2), 0 (�̃�1 , �̃�2), 1

𝑎1

𝑎′1

𝑎2

𝑎2

Figure 7.3.: The TAMP Computation Tree. White nodes contain both fixed continuous states
and free continuous states subject to constraints . Gray nodes do not contain
any free states. The color of the edges indicates the two types of expansions:
numeric expansion (in gray) and discrete extension (in black). See the main text
for details.

Alternatively, we can perform a discrete expansion of the node 𝑁1 with new discrete
actions 𝑎2 = place A with Q on red table, resulting in 𝑁4 = (𝑠2 , 𝑥0 , {�̃�1 , �̃�2},Φ′′), where
Φ′′ = {𝜙(𝑥0 , �̃�1; 𝑠0 , 𝑠1), 𝜙(�̃�1 , �̃�2; 𝑠1 , 𝑠2)}. The discrete state has changed to 𝑠2 = [parent_A =

red table, parent_B = B_init, gripper_Q = free], and now we have two free states and
additional constraints (Fig. 7.4b).

We can decide to expand 𝑁3 numerically by computing the two free states jointly, resulting
in the state 𝑁5 = (𝑠2 , 𝑥2 , {}, {}), with a possible 𝑥2 shown in Fig. 7.4c. This operation
can be repeated multiple times, resulting in different (if successful) compute states 𝑁6 =

(𝑠2 , 𝑥′2 , {}, {})with 𝑥′2 shown in Fig. 7.4d.

111

7. Towards Meta-Solvers for Task and Motion Planning

(a) Initial continuous state 𝑥0.

𝑎0

𝑏0

𝑞0

𝑎1

𝑏1

𝑞1

𝑎2

𝑏2

𝑞2

�̃�1 �̃�2

Ref Ref

Grasp

Pose

Kin

Kin

Equal Equal

(b) Free continuous states (�̃�1, �̃�2) subject to constraints. Each state, represented by a
blue rectangle, is factorized into variables [𝑎, 𝑏, 𝑞]. Nonlinear constraints are shown as
squares. Gray circles represent fixed variables (in this case, the initial state).

(c) Continuous state 𝑥2 for discrete
state 𝑠2.

(d) A different continuous state 𝑥′2
for discrete state 𝑠2.

Figure 7.4.: Components of computational states in the TAMP Computation Tree of Fig. 7.3
in the environment shown in Fig. 7.2a.

112

7.6. A Practical Meta-Solver for TAMP

7.6. A Practical Meta-Solver for TAMP
The TAMP Computation Tree provides a framework for designing algorithms for TAMP
that automatically select between joint optimization and sampling operations. With this
formulation, designing a TAMP meta-solver corresponds to defining a search strategy on
the tree that chooses which node to expand next.

Exploration in the TAMP Computation Tree is a daunting task. The state space of the
computation tree has an explicitly infinite branching factor in the compute values operation,
and the number of possible unique discrete states grows exponentially with the number of
objects. In addition to these two inherent TAMP challenges, the state space in the TAMP
Computation Tree is even larger, as it includes the state of computation rather than just the
original discrete-continuous state space.

In this section, we propose a simple search algorithm that explores the TAMP Computation
Tree in an effective manner. The goal of this algorithm is not to outperform state-of-the-
art TAMP solvers, but to provide a foundational understanding and intuition of TAMP
meta-solvers, which could be revolutionary for designing efficient TAMP solvers in the
future.

7.6.1. Algorithm

Our TAMP meta-solver is a heuristic search algorithm on the space of computational states.
The objective of the search algorithm is to find an optimal solution to the TAMP problem,
i.e., the shortest task plan that has a valid motion, using the least compute effort.

The computational level To manage the infinite branching factor of the numeric expansion,
we associate a computational level with each node, l(𝑁) ∈ N, to incrementally enumerate
the infinite branching factor, analogous to the level used in PDDLStream. Each time a
node with free variables undergoes numeric expansion, we increment its level by one and
reintroduce it into the open list. When we create a new node, it inherits the level of its
parent node.

Incorporating the level into the node score provides an iterative-widening search algorithm
that can repeat numeric expansion operations, each time at a higher cost. This level is
the mechanism that allows us to explore new branches of the tree while conducting new
expansions in previous nodes, resulting in different continuous states that could potentially
lead to a solution.

TAMP cost and compute cost We distinguish between two types of costs: compute cost
and TAMP cost. The TAMP cost is the cost in the original TAMP problem, assuming each

113

7. Towards Meta-Solvers for Task and Motion Planning

discrete action has a unit cost. The compute cost refers to the cost of the underlying compute
operations.

For the compute cost, we use a straightforward cost model for the operations in the TAMP
Computation Tree.

– The compute cost for a discrete expansion is zero.

– The compute cost for a numeric expansion of a node 𝑁 = (𝑠, 𝑥, �̃� ,Φ) equals the
number of free states |�̃� | we attempt to compute.

Thus, the compute cost-to-go 𝑐𝑐(𝑁) for node 𝑁 = (𝑠, 𝑥, �̃� ,Φ) is the optimal compute cost
required to reach a goal state, i.e., solving the original TAMP problem from 𝑁 . It can be
expressed as the sum of two components:

𝑐𝑐(𝑁) = |�̃� | + 𝑐TAMP(𝑠) , (7.3)

where |�̃� | is the number of free states, and 𝑐TAMP(𝑠), the TAMP cost-to-go, is the length of
the shortest task plan from 𝑠 to a goal state that is also valid for continuous motion.

We can also define a compute cost-to-come 𝑔𝑐(𝑁) as the number of continuous states that
have been assigned, starting from the root node. The TAMP cost-to-come 𝑔TAMP(𝑠) is the
length of the task plan from the root to the current node.

Evaluating the function 𝑐TAMP(𝑠)would require solving a TAMP problem in itself. However,
we can define a lower bound 𝑐TASK(𝑠) ≤ 𝑐TAMP(𝑠) that disregards the geometric information
and can be efficiently calculated by calling a discrete task planner.

Score function To balance the TAMP cost with the compute cost and progressively explore
the infinite branching factor of the numeric expansions, we define a score function. The
score function 𝑓 (𝑁) for a node 𝑁 = (𝑠, 𝑥, �̃� ,Φ) is a tuple of two values:

𝑓 (𝑁) → [𝑐TASK(𝑠) + 𝑔TAMP(𝑠) + 𝑙(𝑁),−𝑔𝑐(𝑁)] . (7.4)

The best node is selected based on the first value (lower is better), and the second value is
used for breaking ties (lower is better, i.e., we prefer a node where we have already invested
compute effort). If ties persist, they are broken randomly. These two components prioritize
expanding nodes in task plans with potentially few discrete actions, which have not been
previously attempted, and that will require less compute effort to achieve (since some states
have already been computed).

What is missing to outperform state-of-the-art TAMP solvers? In the experiments sec-
tion, we demonstrate how our simple meta-algorithm can outperform sample-based and

114

7.6. A Practical Meta-Solver for TAMP

Algorithm 7.1 The TAMP meta-solver.
1: Input: 𝑁0 = (𝑠0 , 𝑥0 , {}, {}, 𝑙 = 0)
2: ⊲ Initial computational state (with computational level 𝑙)
3: 𝐿← {𝑁0} ⊲ Open list
4: while |𝐿| > 0 do
5: 𝑁 ← Choose Best(𝐿) ⊲ Node with best score 𝑓 (𝑁) (Eq. (7.4))
6: Remove 𝑁 from 𝐿
7: if |𝑁.�̃� | = 0 & 𝑔 ⊆ 𝑁.𝑠 then return 𝑁 ⊲ We have reached the

discrete goal, and all continuous states are assigned
8: end if
9: if |𝑁.�̃� | > 0 then

10: 𝑁′← Numeric_Expansion(𝑁) ⊲ Compute values for free
variables (Eq. (7.2))

11: if 𝑁′ ≠ FAIL then
12: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
13: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add new node to open list
14: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
15: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
16: else
17: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
18: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
19: continue
20: end if
21: end if
22: for 𝑎 ∈ 𝒜(𝑁.𝑠) do
23: 𝑁′← Discrete_Expansion(𝑁, 𝑎) ⊲ Expand with discrete

action (Eq. (7.1))
24: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
25: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add node to open list
26: end for
27: end while

optimization-based TAMP solvers in short-horizon planning problems involving two ob-
jects, and one or two robots, but which require finding the right balance between individu-
ally sampling states or optimizing them jointly.

To match and surpass the performance of state-of-the-art TAMP solvers on larger TAMP
problems, our meta-solver needs two additional ingredients to share information between
the different computational states in the tree:

– Detection and encoding of geometric conflicts – A fundamental challenge in TAMP is that
the PDDL heuristic distance does not include information about geometry and can be

115

7. Towards Meta-Solvers for Task and Motion Planning

rather uninformative in some contexts. To address this issue, we could incrementally
integrate information about geometry back into the discrete task description. In our
previous TAMP solvers, we incorporated negative information in the form of conflicts
(either prefixes or subsets of infeasible nonlinear constraints) to modify the original
discrete planning task. Alternatives include employing learned heuristics based on
the solutions of previous similar problems or designing heuristics that, while fast to
compute, can incorporate some knowledge about geometry.

– Reusing computations – Solving a TAMP problem involves multiple numeric expan-
sions, which can be computationally expensive. To alleviate this, we could reuse
computations from previous nodes in new expansions. For instance, if we have al-
ready computed a trajectory between two configurations, that computation could be
reused in other expansions requiring the same calculation.

Incorporating these two ideas into the meta-solver (Algorithm 7.1) using the tools we
developed in Chapter 5, namely conflict detection and creating a database of feasible partial
solutions, is a direction for future work. Another open question for future research is how
to better utilize the history of all computations, reusing information between sibling nodes,
different nodes with the same discrete state, and similar task plans.

7.7. Analyzing and Designing TAMP Solvers with the TAMP
Computation Tree

The TAMP Computation Tree is a framework that models the different computational
operations performed while solving TAMP problems. Crucially, it provides a unified
framework encompassing both conditional sampling and joint optimization. In the TAMP
Computation Tree, conditional sampling operations correspond to sampling the continuous
states one at a time, while joint nonlinear optimization involves assigning values to a
sequence of free states collectively.

We propose that TAMP solvers can be conceptualized as sophisticated search strategies for
navigating the TAMP Computation Tree. These strategies can share information between
different computational states and store the history of all prior decisions and computations.

Theorem 7.1 (Existence of a Search Algorithm in the TAMP Computation Tree). If the set of
computational operations a TAMP solver utilizes is encompassed by the possible expansions in the
TAMP Computation Tree, then a search algorithm exists within the TAMP Computation Tree that
can emulate the solver’s behavior.

This theorem presents an existence argument; we cannot offer a constructive proof, meaning
we cannot articulate a concise analytical function for selecting which node to expand next.
The search algorithm need not be a classical one like depth-first or breadth-first search; it

116

7.7. Analyzing and Designing TAMP Solvers with the TAMP Computation Tree

Algorithm 7.2 Optimization-based TAMP solver in the TAMP Computa-
tion Tree. Changes with respect to the meta-solver highlighted in orange.

1: Input: 𝑁0 = (𝑠0 , 𝑥0 , {}, {}, 𝑙 = 0)
2: ⊲ Initial computational state (with computational level 𝑙)
3: 𝐿← {𝑁0} ⊲ Open list
4: while |𝐿| > 0 do
5: 𝑁 ← Choose Best(𝐿) ⊲ Node with best score 𝑓 (𝑁) (Eq. (7.4))
6: Remove 𝑁 from 𝐿
7: if |𝑁.�̃� | = 0 & 𝑔 ⊆ 𝑁.𝑠 then return 𝑁 ⊲ We have reached the

discrete goal, and all continuous states are assigned
8: end if
9: if |𝑁.�̃� | > 0 & 𝑔 ⊆ 𝑁.𝑠 then ⊲ Optimization-based: Only compute

values for a full candidate task plan
10: 𝑁′← Numeric_Expansion(𝑁) ⊲ Compute values for free variables

(Eq. (7.2))
11: if 𝑁′ ≠ FAIL then
12: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
13: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add new node to open list
14: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
15: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
16: else
17: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
18: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
19: continue
20: end if
21: end if
22: for 𝑎 ∈ 𝒜(𝑁.𝑠) do
23: 𝑁′← Discrete_Expansion(𝑁, 𝑎) ⊲ Expand with discrete action

(Eq. (7.1))
24: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
25: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add node to open list
26: end for
27: end while

can be a complex system that decides on operations to perform based on all prior actions.
This could include identifying geometric conflicts or assessing bounds of infeasibility prior
to a numeric expansion.

Some advanced TAMP solvers factorize TAMP problems (i.e., the full discrete and con-
tinuous state is decomposed). For clarity in this presentation, we have depicted a TAMP
Computation Tree in the full configuration space, without explicitly modeling factoriza-
tion. Incorporating factorization would simply require breaking down the full continuous
state into variables, as demonstrated in the Planning with Nonlinear Transition Constraints
formulation.

117

7. Towards Meta-Solvers for Task and Motion Planning

Algorithm 7.3 Sampling-based TAMP solver in the TAMP Computation
Tree. Changes with respect to the meta-solver highlighted in orange.

1: Input: 𝑁0 = (𝑠0 , 𝑥0 , {}, {}, 𝑙 = 0)
2: ⊲ Initial computational state (with computational level 𝑙)
3: 𝐿← {𝑁0} ⊲ Open list
4: while |𝐿| > 0 do
5: 𝑁 ← Choose Best(𝐿) ⊲ Node with best score 𝑓 (𝑁) (Eq. (7.4))
6: Remove 𝑁 from 𝐿
7: if |𝑁.�̃� | = 0 & 𝑔 ⊆ 𝑁.𝑠 then return 𝑁 ⊲ We have reached the

discrete goal, and all continuous states are assigned
8: end if
9: if |𝑁.�̃� | > 0 then

10: 𝑁′← Numeric_Expansion(𝑁) ⊲ Compute values for free
variables (Eq. (7.2))

11: if 𝑁′ ≠ FAIL then
12: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
13: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add new node to open list
14: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
15: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
16: else
17: 𝑁.𝑙 ← 𝑁.𝑙 + 1 ⊲ Increase level
18: 𝐿← 𝐿 ∪ {𝑁} ⊲ Add old node to open list
19: continue
20: end if
21: end if
22: if |𝑁.�̃� | = 0 then ⊲ Sampling-Based: Discrete expansion only in

nodes without free variables
23: for 𝑎 ∈ 𝒜(𝑁.𝑠) do
24: 𝑁′← Discrete_Expansion(𝑁, 𝑎) ⊲ Expand with discrete action

(Eq. (7.1))
25: 𝑁′.𝑙 ← 𝑁.𝑙 ⊲ Inherit level
26: 𝐿← 𝐿 ∪ {𝑁′} ⊲ Add node to open list
27: end for
28: end if
29: end while

We now illustrate how traditional sample-based or optimization-based TAMP solvers are
represented as search algorithms in the TAMP Computation Tree that utilize only a subset
of the available operations.

Optimization-based TAMP solver Within the TAMP Computation Tree framework, an
optimization-based solver applies numeric expansion exclusively to computational states

118

7.8. Experimental Results

(a) (b) (c) (d)

(e) (f) (g)

Figure 7.5.: Benchmark TAMP problems.

that satisfy the discrete goal—thereby optimizing all continuous states for a candidate plan
collectively at the end.

Algorithm 7.2 demonstrates this approach by altering a single line in the TAMP meta-solver,
highlighted in orange.

Sampling-based TAMP solver In the TAMP Computation Tree framework, a sampling-
based solver permits only the discrete expansion of nodes without free variables. This
approach limits the number of free states in a compute state to one, ensuring that motion is
computed sequentially, step by step. Algorithm 7.3 implements this method by changing
one line in the TAMP meta-solver, also highlighted in orange.

7.8. Experimental Results
The goal of the experimental evaluation is twofold. First, we aim to present a set of small and
illustrative TAMP problems that expose the balance and trade-off between optimization and
sampling. Second, we demonstrate that our TAMP meta-solver bridges the gap between
optimization and sample-based solvers for TAMP, outperforming them in terms of average
computational time across different problems. Importantly, we do not expect our TAMP

119

7. Towards Meta-Solvers for Task and Motion Planning

(a)

(b)

(c)

Figure 7.6.: Example solutions to the TAMP problems in Fig. 7.5 (Part 1).

solver to outperform state-of-the-art TAMP solvers in problems that involve interacting with
a large number of objects. Our TAMP meta-solver, implemented as a simple yet effective
A*-like search on the tree, cannot yet scale to large settings, which require more effective
ways to explore the space of possible computations.

Benchmark Our benchmark comprises 7 problems that involve at most two robots and
two objects. The maximum length of the task plan required to solve all problems is four.
The main challenges are the interdependencies between the different steps of the motion
and the constraints imposed by the geometry and obstacles of the environment.

1. Blocks on a small table (in short, small) – The task is to move the two blocks to the red
table, which requires very precise placement to ensure that the two blocks fit on the
table. See the environment in Fig. 7.5d and the example solution in Fig. 7.7d.

2. Blocks on a cluttered table (cluttered) – The task is to move the two blocks to the red
table. The table is now larger, but there are three obstacles in the middle. See the
environment in Fig. 7.5c and the example solution in Fig. 7.7c.

3. Handover of a small block (handover) – The goal is to move the object to the red table.
Due to reachability constraints, the optimal solution requires a handover, which de-

120

7.8. Experimental Results

(a)

(b)

(c)

(d)

Figure 7.7.: Example solutions to the TAMP problems in Fig. 7.5 (Part 2).

mands very precise grasping to avoid collisions between the end-effectors. See the
environment in Fig. 7.5g and the example solution in Fig. 7.6b.

4. Transfer of a block (transfer) – The task is to move the block to the red table. Now,
the block is very small, so the robots cannot perform a handover and should use the
large auxiliary table instead. The table is large, and both robots can only reach a
small subset of the table. See the environment in Fig. 7.5e and the example solution
in Fig. 7.6c.

5. Transfer of a block with obstacles (transfer-obs) – The task is to move the block to the red
table. Now, the table is cluttered with obstacles, and the auxiliary table is situated in
the middle. See the environment in Fig. 7.5f and the example solution in Fig. 7.7a.

6. Stacking blocks (stack) – The task is to build a tower on a table with obstacles. See the
environment in Fig. 7.5a and the example solution in Fig. 7.7b.

121

7. Towards Meta-Solvers for Task and Motion Planning

7. Block on an occupied table (occupied) – The task is to put a block on a table that is already
filled with one block. Therefore, the optimal solution requires moving the obstructing
block first. See the environment in Fig. 7.5b and the example solution in Fig. 7.6a.

Note that in the current implementation, we do not compute the continuous trajectory be-
tween keyframes; instead, we consider only the keyframe configurations as the continuous
state. In tabletop environments, once the sequence of keyframes is computed, the continu-
ous trajectory can be efficiently computed using sample-based motion planning (e.g., RRT)
and/or trajectory optimization.

Algorithms We evaluate the TAMP meta-solver (Algorithm 7.1) against a representative
optimization-based TAMP solver (Algorithm 7.2) and a sampling-based TAMP solver (Al-
gorithm 7.3), implemented as different search strategies in the TAMP Computation Tree.
The solvers will be denoted, respectively, by Meta, Opt (Optimization), and Sampling.

Evaluation metrics As a metric, we use the compute time to find a solution. In particular,
we consider only the compute time spent in the Numeric_Expansion operations, while
neglecting the time spent computing the PDDL heuristic and managing the search queue
in the TAMP Computation Tree, which is usually one or two orders of magnitude smaller.

Experiments are run 20 times, and we report the first quartile, median, and third quartile.
We normalize the compute time by the median of the best-performing algorithm in each
problem. In each run, we use a different random seed, which influences the initialization of
nonlinear optimization and sampling operations, often resulting in very disparate compute
times because numeric expansions fail or compute values that are not valid later to reach
the goal.

7.8.1. Example Execution of the Three Algorithms

We first show how Sampling, Opt (Optimization), and Meta explore the TAMP Computation
Tree in different ways when solving different problems.

Fig. 7.8 shows the TAMP Computation Tree for the problem Blocks on a small table, and
Fig. 7.9 shows the TAMP Computation Tree for the problem Blocks on a cluttered table, for
the three algorithms. The trees correspond to a reference run in our benchmark; because
all algorithms are stochastic, the tree might vary between different runs.

Legend: We represent computation trees following the example in Fig. 7.3. Gray squares
represent compute states without free continuous states. The green square is a fixed con-
tinuous state that reaches the goal, i.e., a solution to the TAMP problem. A red square

122

7.8. Experimental Results

indicates that the numeric expansion has failed. The top gray square is the initial compu-
tational state. Circles are compute states with one or more free continuous states. Blue
circles are compute states that reach the discrete goal but contain free continuous states. An
arrow from a circle to a square indicates a numeric expansion. The number of continuous
states computed in a numeric expansion is equal to the number of circular nodes from the
previous last fixed state (previous gray square). An arrow from a square or circle node to a
circle node indicates a discrete expansion.

Observations: The optimization solver only performs numeric expansion on nodes that
reach the discrete goal. This is reflected in the tree because only the blue circles (goal
candidates) undergo numerical expansion (i.e., have children that are squares). The numeric
expansion computes all the free states from the root and the circles jointly.

The sampling solver performs numeric expansions on all nodes that have free states and
does not allow for consecutive free states. This is illustrated in the tree because a circle node
is never a descendant of another circle node.

The meta solver combines sampling and optimization, allowing for multiple free states and
numeric expansion of intermediate states, resulting in an adaptive combination of circle
and square nodes in the tree.

Performance in these problems: The two selected problems are representative of the
performance of the three algorithms in the benchmark. The initial state and the goal are
the same, but the size of the table and the presence of three obstacles significantly impact
performance.

Blocks on a small table (Fig. 7.5d) – requires joint reasoning to place the blocks precisely
on the small table without collisions. The optimization solver only requires two numeric
expansions because the placement of the two blocks is optimized jointly (the first expansion
failed due to convergence to a poor local optimum). Conversely, the sampling solver requires
multiple sampling attempts because most of the partial solutions for the placement of the
first block are unsuitable for the placement of the second block. This is illustrated by the
number of failed numerical expansions in the last expansion. Eventually, with enough
attempts, we sample continuous states that are also compatible with the subsequent steps
to reach the goal. The meta-solver initially attempts to generate a solution using sampling,
but after a few failed attempts, the search algorithm automatically switches to optimization.
The solution is generated by computing the last three states jointly, conditioned on the pick
configuration of the first block – which allows for taking into account the tight constraints
of the placement of the two blocks.

Blocks on a cluttered table (Fig. 7.5c) – does not require joint reasoning, and sampling is more
effective because it avoids solving a larger optimization problem with multiple infeasible

123

7. Towards Meta-Solvers for Task and Motion Planning

Problem Opt Sampling Meta
𝑄1 𝑄2 𝑄3 𝑄1 𝑄2 𝑄3 𝑄1 𝑄2 𝑄3

1 handover 0.9 1.2 1.4 1.0 2.7 7.0 0.9 1.0 1.1
2 small 0.7 1.0 2.3 2.9 5.8 11.3 1.6 2.4 3.3
3 cluttered 2.1 3.4 8.8 0.6 1.0 1.5 0.7 2.1 2.9
4 stack 1.3 1.9 2.6 0.9 1.0 1.1 0.9 1.0 1.2
5 occupied 0.7 1.0 1.5 1.6 4.6 5.9 1.7 1.9 2.2
6 transfer 1.2 1.8 2.1 1.5 2.8 4.4 0.8 1.0 1.3
7 transfer-obs 5.1 5.7 9.1 0.9 1.0 1.1 2.0 2.6 2.9

Summary 1.7 2.3 4.0 1.3 2.7 4.6 1.2 1.7 2.1

Table 7.1.: Computation time to find a solution in the 7 problems of the benchmark, normal-
ized by the median of the best-performing algorithm in each problem. 𝑄1 , 𝑄2,
and 𝑄3 are the first quartile, the median, and the third quartile, respectively.
Colors red and green highlight the worst and best algorithms for each statistic
(𝑄1 , 𝑄2, and 𝑄3) in each problem. The same results are shown graphically in
Fig. 7.10.

stationary points due to the three obstacles. The optimization solver requires multiple at-
tempts to find a joint solution to the candidate plans (several red squares). Conversely, the
sampling solver finds the solution with only two attempts, using less expensive computa-
tions because each step is computed individually. Here, the meta-solver behaves similarly
to sampling, as the search algorithm always favors easier sampling operations at the begin-
ning.

7.8.2. Comparison

Results are shown in Fig. 7.10 and Table 7.1. From the reported statistics, we consider
𝑄3 as the most important one, as it models the worst-case performance. Minimizing the
worst-case performance is critical for real applications, where the goal is to guarantee that
an algorithm solves the problem quickly with a very high probability.

Is sampling or optimization better? When comparing only the sampling and optimization-
based solvers, optimization performs better in 4 out of 7 problems. Sampling is better in
problems that do not require reasoning about joint constraints and have obstacles (which
have a more negative impact on the optimization-based solver): Blocks on a cluttered table,
Stacking blocks, and Transfer of a block with obstacles. Optimization is better in problems that
require reasoning about joint constraints but do not contain obstacles: Blocks on a small table,
Handover of a small block, Transfer of a block, and Block on an occupied table.

Analysis of the performance of the meta-solver: If we analyze the results problem by problem,
the meta-solver is never the worst in any problem, confirming that providing the flexibility
to choose computational operations is required if we want to solve each problem as effi-

124

7.8. Experimental Results

(a) Optimization-based solver (Opt).

(b) Sampling-based solver (Sampling).

(c) Meta-solver (Meta).

Figure 7.8.: Computation Tree in the problem Blocks on a small table.

125

7. Towards Meta-Solvers for Task and Motion Planning

(a) Optimization-based solver (Opt).

(b) Sampling-based solver (Sampling).

(c) Meta-solver (Meta).

Figure 7.9.: Computation Tree in the problem Blocks on a cluttered table.

126

7.8. Experimental Results

1 2 3 4 5 6 7
Problem

2

4

6

8

10
Co

m
pu

ta
tio

n
tim

e
(n

or
m

al
ize

d)
Opt
Sampling
Meta

Figure 7.10.: Computation time to find a solution in the 7 problems of the benchmark,
normalized by the median of the best-performing algorithm in each problem.
The dot is the median, and the brackets show the interval between the first and
third quartile (i.e., the 25th and 75th percentiles). The numeric results and the
problem labels are shown in Table 7.1.

ciently as possible. This is indeed a very strong result, as it shows that our meta-solver
can automatically balance between optimization and sampling and can choose the best
strategy for each problem online, simply by trying different operations in a clever manner.
Furthermore, the meta-solver outperforms both alternatives in 3 out of 7 problems.

When we summarize the results across problems using the arithmetic mean of 𝑄1, 𝑄2, and
𝑄3, Meta outperforms both Sampling and Optimization. The most significant difference is in
the third quartile, i.e., the worst-case performance, where Meta is, on average, twice as fast
as the baselines.

7.8.3. Discussion of Scalability

Preliminary tests on larger problems indicate that the Meta algorithm scales less effectively
than Opt and Sampling in TAMP problems with more objects. The branching factor in Meta
is higher than in Opt and Sampling because it allows for a more flexible set of operations,
and the number of compute states to expand grows more rapidly. In contrast, Sampling and
Opt, by design, restrict the space of possible computations, enabling them to evaluate more
candidate task plans and resulting in shorter times to generate solutions in larger problems.

127

7. Towards Meta-Solvers for Task and Motion Planning

In our meta-solver, the current A*-like search neither shares information between nodes
of different subbranches nor similar plans, nor does it utilize the history of computations,
resulting in a suboptimal search strategy when the number of objects increases.

Overall, we believe that the TAMP Computation Tree is a promising framework for analyz-
ing and designing TAMP solvers, but it requires a better scoring function for scalability. It
remains unclear whether achieving scalability will necessitate additional complex reasoning
to select the next node for expansion, or if a simple scoring function will suffice.

7.9. Limitations
The framework presented here represents more a foundational study than a practical algo-
rithm superior to existing TAMP solvers. Indeed, our experimental study focuses primarily
on TAMP problems requiring short-horizon planning.

A potential extension for scaling to larger problems involves incorporating the conflict
extraction algorithm presented in Chapter 5. Upon detecting a conflict, the PDDL domain
used to estimate the distance to the goal can be updated using the same reformulation
as in Chapter 5. Ensuring that the detected conflict is genuine and not the result of an
unlucky solver initialization, as previously discussed in the Limitations section of Chapters 4
and 5, is a significant challenge. Beyond conflicts, sharing more information between nodes
belonging to the same high-level task plan, even if they are not in the same branch, is a
promising idea. Also, sharing positive information between nodes, such as reusing the
results of a numeric expansion in a different node, could be a potential direction for scaling
the algorithm.

Moreover, we have limited the space of sampling operations to the level of a continuous
state, instead of using a finer factorization in terms of single variables or backward-in-
time conditional sampling, as in Chapter 6. Thus, our meta-solver is not yet exploiting
the factored structure we have explored throughout this thesis. As future work, we plan
to investigate the benefits of allowing this fine discretization in the numeric expansions
while balancing the inherent trade-off between implementation complexity and algorithmic
performance in our TAMP meta-solver.

7.10. Conclusion
In this chapter, we have introduced the TAMP Computation Tree, an abstract TAMP frame-
work that reasons at the level of computational states, instead of adhering to the traditional
notion of discrete-continuous states commonly used in prior TAMP solvers. A computa-
tional state encompasses both fixed and free variable states subject to nonlinear constraints,

128

7.10. Conclusion

enabling the modeling of the behavior of both optimization-based and sample-based TAMP
solvers.

Leveraging this innovative framework, we have proposed a TAMP meta-solver, where
the term meta implies that this solver can capitalize on both sampling and optimization
techniques to tackle TAMP challenges, acting as a solver of solvers. The meta-solver is
realized as a simple yet efficient heuristic search algorithm in the space of computational
states, striking a natural balance between optimization and sampling-based computations.

Through a series of illustrative problems, we have demonstrated that the ideal TAMP
solver varies with the specific problem, as no single numerical computation method excels
across all scenarios. On a benchmark limited to small problems, our meta-solver adaptively
selects the most suitable strategy for each problem, intelligently experimenting with various
operations, and, on average, outperforms both optimization and sampling-based TAMP
solvers across a broad spectrum of diverse problems.

129

Part III.

Accelerated Task and Motion
Planning with Learning Methods

131

Chapter8
Deep Generative Constraint Sampling

8.1. Introduction
Computing keyframe configurations of a manipulation sequence is a core problem in
robotics and represents one of the fundamental steps in optimization-based methods for
Task and Motion Planning (TAMP). It involves sampling from a constraint manifold, which
can be formulated as a nonlinear optimization problem without a cost term. However, in
cluttered environments with complex grasp models, these constraints become highly non-
linear, and local optimizers often get trapped in poor local optima, failing to find a feasible
solution.

In Chapter 6, we addressed this challenge with a meta-solver that automatically combines
joint optimization and constrained sampling to find the best sequence of computations for
generating solutions. In a complementary line of research, this chapter1 presents a method
to accelerate joint nonlinear optimization using a dataset of solutions from similar problems.

Our method, Deep Generative Constraint Sampling (DGCS), combines a deep generative
model for sampling close to a constraint manifold with nonlinear constrained optimization
to project onto the manifold. The generative model, conditioned on the problem instance
and taking a scene image as input, is trained with a dataset of solutions and a novel analytic
constraint term.

An image-based representation of the problem instance (e.g., [Driess et al., 2020, Xie et al.,
2019, Ebert et al., 2017, Paxton et al., 2019]) provides a fixed-size parametrization that
encodes obstacles and objects for interaction, eliminating the need to engineer features for
the problem instance, and can accommodate a varying number of obstacle objects.

1This chapter is based on the publication: Ortiz-Haro, J., Ha, J. S., Driess, D., & Toussaint, M. (2022). Structured
deep generative models for sampling on constraint manifolds in sequential manipulation. In the Conference
on Robot Learning (pp. 213-223). PMLR.

133

8. Deep Generative Constraint Sampling

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014, Arjovsky et al., 2017] and
Variational Autoencoders (VAEs) [Kingma and Welling, 2013] have introduced a powerful
methodology for training such generative models and have shown potential to represent
complex distributions in high-dimensional spaces. This work adopts the training objectives
and methods of GANs, aiming to minimize the divergence between the generative and
target distributions. With a set of diverse solutions from similar problems as training data,
the deep generative model is trained to produce samples close to the current problem’s
solution manifold. These samples are then used as a warm start for the nonlinear optimizer,
resulting in a combined data and model-based approach.

Despite the expressive power of function approximators and recent advancements in deep
generative models, they still face limitations in generating samples from highly nonlinear
and multimodal distributions. This is critical in our application, as the solution manifolds
of manipulation sequences are highly nonlinear and often disconnected.

To address multimodality, accuracy, and sample complexity, we propose an extension of our
generative framework to leverage the structure of factored nonlinear programs in robotic
sequential manipulation, as detailed in Chapter 3. Specifically, we decompose the sampling
of a full solution into a sequence of smaller sampling operations and train a separate
conditional generative model for each step.

We evaluate our approach on two problems of robotic sequential manipulation in cluttered
environments. Experimental results show that our deep generative model produces diverse
and precise samples and outperforms heuristic warm start initialization.

8.2. Related Work
Generative models in robotics Recently, deep generative models have successfully been
applied in robotics, especially in settings where problems are represented directly with
images or point clouds. For instance, 6DOF grasps of complex objects can be generated
using a VAE [Mousavian et al., 2019, Murali et al., 2020] conditioned on the object’s point
cloud.

In the context of motion and manipulation planning, generative models have been used to
sample informative and collision-free configurations [Ichter et al., 2018, Ha et al., 2018, Su-
tanto et al., 2020, Kurutach et al., 2018, Kim et al., 2017, Simeonov et al., 2020]. These
informed samples, as opposed to traditional uniform sampling, significantly improve the
running times of sampling-based algorithms. In this line of research, the general goal is
to train a network to directly predict partial or full solutions to a problem. In contrast, we
combine learned generative models with model-based local optimization for constraint pro-
jection to achieve accurate sampling on high-dimensional nonlinear constraint manifolds.

134

8.2. Related Work

Figure 8.1.: Sequence of keyframes (pick - handover - place) for the Handover problem. Our
sampling framework (DGCS) combines a deep generative model that produces
approximate samples (top row) conditioned on the scene (first column), with
a nonlinear optimizer that projects them onto the constraint manifold (bottom
row).

Warm start in nonlinear optimization In robotics, nonlinear optimization is used to sample
on constraint manifolds and to optimize trajectories, e.g., [Toussaint et al., 2018, Mordatch
et al., 2012, Winkler et al., 2018]. Recent data-based approaches aim to learn a warm start
to reduce online computation time [Mansard et al., 2018, Merkt et al., 2018]. However,
the mapping between problem instances and feasible manifolds is extremely nonlinear and
discontinuous, presenting a fundamental challenge [Hauser, 2016, Tang and Hauser, 2018].

In settings where nonlinear programs can be represented with mixed-integer constraints,
a successful approach is to learn an assignment for the integer constraints and conduct
subsequent optimization [Deits et al., 2019, Bertsimas and Stellato, 2020, Cauligi et al.,
2020, Wells et al., 2019, Driess et al., 2020]. Compared to our method, integer formulations
use a discriminative model that is easier to train, but their generalization to problems
without a clear integer structure is challenging. Recently, [Lembono et al., 2020] applied
GANs to inverse kinematics, incorporating forward kinematics into the network training.
In contrast, we use general analytical features in the cost term, and our framework can scale
to longer sequential manipulation tasks by exploiting factorization.

135

8. Deep Generative Constraint Sampling

8.3. Sampling on a Constraint Manifold
The problem we address is to generate samples from a manifold ℳ𝜏 parametrized by a
fixed-dimensional (though potentially large, e.g., images) problem parameter 𝜏 ∈ R𝑚 ,

ℳ𝜏 = {𝑥 ∈ R𝑛 | ℎ(𝑥; 𝜏) = 0, 𝑔(𝑥; 𝜏) ≤ 0} , (8.1)

where ℎ(𝑥; 𝜏) : R𝑛 × R𝑚 → R𝑚eq and 𝑔(𝑥; 𝜏) : R𝑛 × R𝑚 → R𝑚ineq are the nonlinear equality
and inequality constraints, respectively, and the parameter 𝜏 ∈ R𝑚 represents the current
problem instance and parametrizes all constraints.

In the context of TAMP, such manifolds arise once we have fixed the task plan (e.g., Eq. (2.14)
in the LGP Formulation and Eq. (5.2) in the PNTC formulation). The parameter 𝜏 represents
the properties of all objects in the scene, such as initial position, size, shape, and goal
position. The variable 𝑥 ∈ R𝑛 concatenates all the degrees of freedom of the configurations
of robots and objects in the entire manipulation sequence. The (in)equality constraints ℎ, 𝑔
describe the objectives of the problem, such as collision avoidance, grasping, kinematic
and pose constraints, and are parametrized by the problem instance (e.g., the position of
obstacles).

A generative model 𝑥 ∼ P(𝜏) that produces feasible solutions, i.e., samples 𝑥(𝑖) ∈ ℳ𝜏, is
built from two components (see Algorithm 8.1): a randomized seed 𝑥0 ∈ R𝑛 generation and
a constrained optimization algorithm that projects the seed 𝑥0 onto the solution manifold
via the optimization problem (8.2),

min
𝑥∈R𝑛
∥𝑥 − 𝑥0∥2 s.t. ℎ(𝑥; 𝜏) = 0, 𝑔(𝑥; 𝜏) ≤ 0. (8.2)

In our current implementation, we solve (8.2) approximately by running a nonlinear opti-
mizer from the starting point 𝑥0 on the feasibility problem:

find 𝑥 ∈ R𝑛 s.t. ℎ(𝑥; 𝜏) = 0, 𝑔(𝑥; 𝜏) ≤ 0, (8.3)

where the initialization and internal regularization of the optimizer (Augmented Lagrangian
with Gauss-Newton) provide an implicit regularization with respect to 𝑥0.

Without using learning methods, the seed 𝑥0 is typically sampled from a uniform or Gaus-
sian distribution over the ambient space R𝑛 , resulting in an uninformed guess usually far
from the solution manifold.

The projection step is a non-convex optimization problem with no guarantees of producing
a feasible sample; especially for complex sequential manipulation problems, the optimiza-
tion landscape often contains substantial infeasible local optima induced by the nonlinear
constraints, making nonlinear projection prone to failure unless the seeds are close to the
solution manifold.

136

8.4. Training Deep Generative Models to Sample on Constraint Manifolds

Algorithm 8.1 Sampling on a constraint manifold with deep generative
models.

1: Input: Problem parametrization 𝜏, number of trials 𝑁
2: 𝐿 = {} ⊲ Empty list of samples
3: for 𝑖 = 1, 2, . . . , 𝑁 do
4: Sample 𝑥(𝑖)0 ∼ P�(𝜏) ⊲ Generate an approximate solution with deep

generative models
5: 𝑥(𝑖) ← Π(𝑥(𝑖)0) ⊲ Project 𝑥(𝑖)0 ontoℳ𝜏 with nonlinear optimization,

warm-started with 𝑥(𝑖)0 (Eq. (8.2))
6: if 𝑥(𝑖) is feasible then
7: Append 𝑥(𝑖) to 𝐿
8: end if
9: end for

10: Output: 𝐿 ⊲ List of valid samples

To address such difficulties, we train a seeding distribution P�(𝜏) to approximate a reference
distribution of feasible solutions P𝑟(𝜏), so that it can generate diverse samples close to the
parametric manifoldℳ𝜏. These samples are then used as a warm start for the optimizer,
projecting them ontoℳ𝜏. An example of our framework in the context of manipulation
planning is shown in Fig. 8.1.

8.4. Training Deep Generative Models to Sample on
Constraint Manifolds

Our deep generative model is denoted by 𝑥 ∼ P�(𝜏)with 𝑥 = 𝐺�(𝑧, 𝜏), 𝑧 ∼ P𝑧 , where P𝑧 is a
multivariate Gaussian distribution, and 𝐺� is a neural network parameterized by �.

In contrast to the standard application of adversarial generative models for image genera-
tion, our setting also includes an analytical description of the target distribution’s support,
namely, the features𝜙(𝑥; 𝜏) = [ℎ(𝑥; 𝜏),max(0, 𝑔(𝑥; 𝜏))] that characterizeℳ𝜏 with𝜙(𝑥; 𝜏) = 0.
We consider a data-free, gradient-based optimization of the analytical constraint violation,

minE
𝜏
E

𝑥∼P�

𝜙(𝑥; 𝜏)
2
. (8.4)

However, this approach is extremely ill-posed and can converge to a deterministic mapping
𝐺�(𝑧, 𝜏) = 𝐺�,𝜏 for all 𝑧, where the model disregards the noise 𝑧 and loses the capacity to
generate a diverse distribution.

137

8. Deep Generative Constraint Sampling

To enforce sample diversity, we regularize with respect to a reference distribution P𝑟 that is
diverse and has its support on the manifold, satisfying E𝑥∼P𝑟

𝜙(𝑥; 𝜏)
2

= 0. We formulate
the problem as follows:

minE
𝜏
𝑊(P�(𝜏), P𝑟(𝜏)) + 𝛽 E

𝑥∼P�

𝜙(𝑥; 𝜏)
2
, (8.5)

where𝑊 represents the Wasserstein distance, and 𝛽 belongs toR>0. Although the analytical
term does not provide additional information beyond the support of P𝑟 , its contribution
is crucial in the context of function approximation and stochastic gradient descent in non-
convex optimization, as demonstrated in the experiment section.

8.4.1. Wasserstein Distance and Adversarial Formulation

The Wasserstein-1 (Earth Mover’s distance) between two probability distributions P𝑟 and P�
as defined in (8.6) is intuitively the cost of optimally transporting mass from one distribution
to the other,

𝑊(P𝑟 , P�) = inf
𝛾∈Π(P𝑟 ,P�)

E
(𝑥,𝑦)∼𝛾

∥𝑥 − 𝑦∥ , (8.6)

where Π(P𝑟 , P�) denotes the set of all joint distributions with marginals P𝑟 and P�.

Compared to other distance measures such as Jensen-Shannon Divergence or Total Vari-
ation, adversarial generative models employing Wasserstein distances have demonstrated
superior practical stability and convergence, and are less susceptible to mode collapse [Ar-
jovsky et al., 2017, Gulrajani et al., 2017].

Furthermore, in our application, the Wasserstein distance provides a meaningful interpreta-
tion as it reflects the geometric distance between distributions—a critical factor in enhancing
the success rate of subsequent nonlinear optimization.

We minimize the objective function in (8.5) using the Wasserstein GAN formulation [Ar-
jovsky et al., 2017, Gulrajani et al., 2017]. Employing Kantorovich duality, we transform
the original definition in (8.6) into a minimax game between the critic network 𝐷 and the
generator 𝐺, training both concurrently via stochastic gradient descent. Specifically, the
minimax problem, incorporating our analytical feature, is:

min
𝐺

max
𝐷
E
𝜏
E
𝑥∼P𝑟

𝐷(𝑥; 𝜏) − E
𝑥∼P�

𝐷(𝑥; 𝜏) − � E
�̂�∼P�̂�
(∥∇𝐷(�̂�; 𝜏)∥ − 1)2 + 𝛽 E

𝑥∼P�

𝜙(𝑥; 𝜏)
2
, (8.7)

where 𝛽,� are positive real numbers, and �̂� denotes samples interpolated betweenP𝑟 andP�.
Our reference distribution P𝑟(𝜏) consists of a discrete set of solution/problem pairs (𝑥𝑖 , 𝜏𝑖).
These data points are computed offline by resolving a large number of problems with
nonlinear optimization or sequential constrained sampling, starting from randomized and
uninformed initializations–a labor-intensive process that necessitates multiple attempts.

138

8.5. Structured Generative Model by Exploiting Factorization

𝑡 𝑝

𝑞2𝑞1

Kin Kin

Grasp Pose

(a) Factored-NLP.

𝑡 𝑝

𝑞2𝑞1

(b) Sampling Network.

Figure 8.2.: Factored-NLP and sampling network for the Pick and Place problem. (a) Circles
represent variables, and squares represent constraints (see the main text and
Chapter 3 for an explanation). Brown squares indicate collision constraints. (b)
Arrows indicate the factorization of the joint probability and the sequence of
sampling operations.

8.5. Structured Generative Model by Exploiting Factorization
The previous sections treated 𝑥 ∈ R𝑛 as a single vector variable. While the approach for
training a single generative model 𝑥 = 𝐺�(𝑧; 𝜏), 𝑧 ∼ P𝑧 is powerful, we can further improve
scalability to large problems by exploiting a given factorization of 𝑥 and sequentially de-
composing the sampling procedure into a sequence of conditional sampling operations, as
in Bayesian networks [Koller and Friedman, 2009].

We now assume a Factored-NLP formulation of the nonlinear manifold (Section 3.1). The
vector variable 𝑥 ∈ R𝑛 is factored into a set 𝑋 = {𝑥1 , . . . , 𝑥𝑁 } of 𝑁 smaller vector variables
𝑥𝑖 ∈ R𝑛𝑖 , and constraints are decomposed into a set of smaller nonlinear constraints Φ =

{𝜙1 , . . . , 𝜙𝐿}, each one depending only on a subset of the variables.

As illustrated in Chapter 3 for the case of TAMP, such factorization naturally arises in many
applications, where each variable has some semantic and geometric meaning.

Figs. 8.2 and 8.3 show some examples of such Factored-NLPs in the context of robotic
manipulation. Note that the structure of these Factored-NLPs is slightly different from the
ones shown in Chapter 3 and Section 5.3. The key differences are: 1) here, all variables that
are constrained to be fixed to some specific value are removed from the graph; 2) we use two
distinct variables to represent object poses: 𝑡 for the relative grasp and 𝑝 for the absolute
pose; and 3) consecutive variables that are constrained to be equal are merged into a single
variable.

Both formulations of the Factored-NLPs are equivalent, and the differences serve only to
expose a slightly different structure that is beneficial for decomposing the problem into a
sequence of sampling operations. However, in comparison to Section 5.3, we lose the clear
temporal and local structures.

139

8. Deep Generative Constraint Sampling

𝑝𝑡𝑞 𝑡𝑤

𝑞1 𝑟𝑞 𝑞2 𝑤2 𝑤3𝑟𝑤

Kin KinKin Kin

Pose
Grasp Grasp

(a) Handover.

𝑝 �̃�𝑡𝑞 𝑡𝑤

𝑞1 𝑟𝑞 𝑞2 𝑤2 𝑤1𝑟𝑤

Kin KinKin Kin

Pose Pose
RelposeGrasp Grasp

(b) Assembly.

Figure 8.3.: Factored-NLPs for the Handover and Assembly problems.

𝑝𝑟𝑞 𝑟𝑤

𝑡𝑞 𝑡𝑤

𝑤2 𝑤3𝑞1 𝑞2

(a) Handover.

𝑝 �̃�𝑟𝑞 𝑟𝑤

𝑡𝑞 𝑡𝑤

𝑤2 𝑤1𝑞1 𝑞2

(b) Assembly.

Figure 8.4.: Sampling networks for the Assembly and Handover problems.

We quickly introduce the notation used in this chapter. Variables for the configurations of
robots 𝑄 and 𝑊 are 𝑞, 𝑤 ∈ R7 for the arm configuration, and 𝑟𝑞 , 𝑟𝑤 ∈ 𝑆𝐸(2) for the pose of
the mobile base. Relative transformations between objects and grippers are 𝑡𝑞 , 𝑡𝑤 ∈ 𝑆𝐸(3),
and absolute object positions are 𝑝, �̃� ∈ 𝑆𝐸(3). Nonlinear constraints (explained in detail
in Chapter 3), are kinematics (Kin), grasp, position (Pose), relative position (Relpose), and
collisions (in color brown).

8.5.1. Directed Graphical Model and Sequential Sampling

The factored structure directly suggests a factorization of the joint probability distribution
P(𝜏) from which we want to sample. As in Bayesian networks, we can sequence the sampling
if we decide on an ordering of variables that corresponds to a directed acyclic graph. Instead
of learning a single 𝐺� to produce a full assignment with 𝑥 = 𝐺�(𝑧; 𝜏), 𝑧 ∼ P𝑧 , we learn
a conditional model for each factor using the corresponding marginal distributions of the
original data and the subset of corresponding analytical features in the Factored-NLP.

140

8.5. Structured Generative Model by Exploiting Factorization

We illustrate the benefits of this factorization with the Pick and Place problem, as shown in
Fig. 8.2. The joint probability density function 𝑃(𝑝, 𝑡, 𝑞1 , 𝑞2) for this problem is factorized
into (we omit conditioning on 𝜏 for clarity):

𝑃(𝑝, 𝑡, 𝑞1 , 𝑞2) = 𝑃(𝑝)𝑃(𝑡 |𝑝)𝑃(𝑞1 |𝑡)𝑃(𝑞2 |𝑡 , 𝑝) , (8.8)

where 𝑝 is the placement position of the object, 𝑡 is the relative transformation between the
object and the gripper, and 𝑞1, 𝑞2 are the robot joint configurations at the pick and place
keyframes. The factorization exploits conditional independence between (𝑞1 , 𝑝) given 𝑡 and
(𝑞1 , 𝑞2) given 𝑡. We leverage this structure by training a sequence of conditional samplers:
𝑝 ∼ P𝑝 , 𝑡 ∼ P𝑡(𝑝), 𝑞1 ∼ P𝑞1(𝑡), and 𝑞2 ∼ P𝑞2(𝑡 , 𝑝), as illustrated in Figs. 8.2b and 8.5. This
factorization can be easily extended to longer manipulation sequences, with the ordering
𝑝 → 𝑟 → 𝑡 → 𝑞 (object pose, robot base, grasp, robot joint values), as shown in Fig. 8.4 for
the Handover and Assembly problems.

As a side note, using the marginal distributions of a jointly consistent dataset is necessary,
as only the marginals contain useful information about whether a partial assignment will
admit a full solution. For example, when sampling 𝑝 ∼ P𝑝 , we aim to fulfill local constraints
(e.g., Pose) and ensure that the value will be consistent with the future assignment of other
variables. The second type of constraints cannot be evaluated efficiently but is modeled by
the marginal distribution of the data.

8.5.2. The Advantage of Factorization for Modeling Multimodality

Generating samples from a distribution with disconnected supports using a deep generative
model that receives continuous input noise 𝑧 ∼ P𝑧 requires infinite gradients in 𝐺� and can
only be done approximately. In these cases, training is unstable and very sensitive to
hyperparameters and architecture.

We can model disconnected distributions more effectively by factoring the full joint prob-
ability into a sequence of smaller, conditional modules, as confirmed by our experimental
results in Section 8.6.3. The sequencing still requires that each module has the ability to
produce some degree of multimodality. However, once a module in the sequence receives
disconnected input in the form of conditioning, it can successfully produce a disconnected
output. As we chain modules with the ability to generate a small amount of disconnected
components given continuous input, the number of possible disconnected components of
the output grows exponentially with the number of modules in sequence.

Furthermore, from a practical perspective, training smaller modules has proved to be more
effective. For instance, we observed that the analytical feature ∥𝜙(𝑥; 𝜏)∥2 of the joint problem
can provide badly conditioned gradients when evaluated far from the manifold. This
issue is alleviated when considering only subsets of constraints and variables. In our

141

8. Deep Generative Constraint Sampling

1 2 3 4 5

Figure 8.5.: Sequence of learned deep generative models for the Pick and Place problem.

preliminary experiments, we also evaluated GAN frameworks that have a mechanism to
model disconnected distributions [Chen et al., 2016, Khayatkhoei et al., 2018], but we did
not find significant improvements.

8.6. Experiments

8.6.1. Image-Based Problem Representation

We use an image-based representation of the problem instance 𝜏 that consists of a depth
image and masks. Specifically, 𝜏 = {𝑑, 𝑚1 , 𝑚2 , 𝑚3}, where 𝑑 is the depth image, and
𝑚1 , 𝑚2 , 𝑚3 are three masks containing information from the initial object pose, the goal
pose or placement region, and obstacles, respectively, as shown in Fig. 8.6. In the factored
approach, each generative module receives as input only the relevant masks; for example,
the sampler for the robot pick configuration receives a mask of the obstacles and the initial
configuration but not the goal pose.

The main strength of the image representation is that it can generalize to different object
shapes and a varying number of obstacles and shapes. Moreover, a depth camera is readily
available, approximate masks can be computed with image segmentation techniques, and it
provides a robust representation of sequential manipulation problems in tabletop scenarios.

8.6.2. Scenarios

We consider three different manipulation tasks that involve object manipulation with stable
grasps:

142

8.6. Experiments

Figure 8.6.: Image-based representation of problem instances in Assembly and Handover.

Figure 8.7.: Two samples from the deep generative model in the same instance of the Assem-
bly problem are displayed. Each sample is depicted with two keyframes (pick
and assembly). Both seeds lead to a feasible solution.

– Pick and Place: A robot must pick up an object and place it within a specified rectangular
region on the table. Refer to Figs. 8.5 and 8.10 for illustrations.

– Assembly: Two mobile robots are required to each pick up an object and join them
together. The assembly process is not prescriptive and is characterized as a manifold
with constraints on both rotation and position: the objects must align perpendicularly
and establish stable contact with predetermined faces of the cubes, forming a ’T’
shape. Refer to Figs. 8.7 and 8.11 for illustrations.

– Handover: Two mobile robots collaborate to transfer the object from its starting to its
target position via a handover. Refer to Figs. 8.1 and 8.12 for illustrations.

These tasks are executed on a cluttered table with obstacles varying in number from three
to five. The grasp between the gripper and the object is defined by a two-fingered gripper
(e.g., the gripper of the Franka Panda robot), which restricts both position and orientation.
Robots and movable objects are required to avoid collisions with each other, as well as with
any obstacles and the table itself. The training dataset comprises 4,000 pairs of problem-
solution scenarios, computed offline using a user-defined sampling sequence to ensure
diversity. Each problem is depicted by a 64x128x4 image (the network’s input) and the
corresponding environment (used to calculate the analytical error term during training and
to conduct nonlinear optimization in the benchmark).

Variability in instances is introduced by differences in the number, position, and size of ob-
stacles, the dimensions and location of the objects, and the goal configuration (for example,
see Fig. 8.10). The instances in both the evaluation and training datasets are generated from
the same distribution.

143

8. Deep Generative Constraint Sampling

Seeds Solutions

Coverage Precision Error Coverage Precision Success

Big NN 0.81±0.09 0.7±0.11 8.38±1.82 0.58±0.12 0.39±0.06 0.46
Big NN+analytical 0.79±0.12 0.53±0.14 1.21±1.35 0.75±0.13 0.41±0.13 0.43
Structure NN 0.6±0.08 0.62±0.1 8.09±1.35 0.41±0.05 0.44±0.06 0.56
Structure NN+analytical 0.57±0.08 0.47±0.13 1.46±0.79 0.44±0.07 0.28±0.08 0.78

Table 8.1.: Ablation study in the Pick and Place scenario.

8.6.3. Ablation Study

The Pick and Place scenario is utilized for an ablation study of the proposed generative
model. We assess the contribution of the factored structure (Big NN vs Structured NN)
and the analytical error term (+analytical). We evaluate the precision and coverage of seed
samples (output from the deep generative models) and solutions (after projection with
nonlinear optimization) by generating 4.000 samples for each new instance (30 in total).
Results are presented in Table 8.1. We report the following metrics:

– Error: the constraint violation | |𝜙(𝑥; 𝜏)| |2 (unitless, lower is better).

– Precision: the average nearest neighbour distance to a reference dataset. It models
how close samples are to the real data (lower is better).

– Coverage: the average nearest neighbour distance from the reference dataset to the
computed samples. It describes how well the learned distribution covers the reference
dataset (lower is better).

– Success rate: the success rate of the nonlinear optimization, signifying how many
samples result in a feasible solution after optimization (higher is better).

When evaluating the seeds (output of the generative model), our two contributions are
vital for achieving a minimal constraint violation (analytical term) and optimal coverage
(structure). Seeds from the model with both structure and the analytical term are more
likely to lead to a solution (success rate). After the projection step, only samples from
networks with structure exhibit good coverage.

8.6.4. Benchmark: Generative Models in Nonlinear Optimization

The Assembly and Handover scenarios are used to compare our generative model against
two baseline methods for warm-starting (seeding) nonlinear optimizers. We analyze the
number of solved problems and the number of necessary optimization runs. Measuring the
number of solved nonlinear programs is an indirect way to evaluate coverage and sample
quality, as both are fundamental to solving a diverse set of problems with a nonlinear

144

8.6. Experiments

2 4 6 8 10
Number of trials to find a solution

0

20

40

60

80
Nu

m
be

r o
f I

ns
tan

ce
s

Rand
Deep
Rand Data

(a) Handover.

2 4 6 8 10
Number of trials to find a solution

0

20

40

60

80

Nu
m

be
r o

f I
ns

tan
ce

s

Rand
Deep
Rand Data

(b) Assembly.

Figure 8.8.: Histogram of the estimated number of trials necessary to solve an instance
(lower is better).

optimizer and preventing convergence to infeasible points. We compare our complete
model (deep generative model with structure and analytical error term), in short, Deep,
with the baselines:

– Rand: Randomized initial guess around a reference value.

– Rand Data: Choosing samples from the training dataset at random. The initial point
is a feasible sample for another problem of the same family. This is actually a strong
baseline because it provides diverse, informative initial seeds.

We evaluate the generative model (deep generative model + optimization) on 200 problems
from the evaluation dataset. The experiments are repeated 10 times, and we report the mean
and variance. We first report how many optimization trials (each trial has an independent
starting point) are necessary to solve each of the test instances and plot the histogram of
the mean value in Fig. 8.8. Unsolved problems are assumed to be solved with 10 trials
(maximum number of trials).

In both scenarios, the proposed deep generative model outperforms the baseline warm
starts, significantly reducing the number of trials required to solve the instances. First, note
that Rand can only solve 10% of the problems when using a maximum of 10 trials. This is
because the initial guess is not informative, and the nonlinear optimizer often converges to
infeasible points. We now compare Deep against Rand Data and observe that Deep provides a
1.5-2x improvement. On average (across problems), from (Rand Data, 3.86± 1.29) to (Deep,
2.77± 1.79) in Handover and from (Rand Data, 3.99± 1.44) to (Deep, 2.07± 1.38) in Assembly.
To complete the analysis, we also show the cumulative number of problems solved as we
increase the number of optimization trials in Fig. 8.9.

145

8. Deep Generative Constraint Sampling

1 3 5 7 9
Cumulative trials

0

50

100

150

200
So

lv
ed

 In
sta

nc
es

Rand
Deep
Rand Data

(a) Handover.

1 3 5 7 9
Cumulative trials

0

50

100

150

200

So
lv

ed
 In

sta
nc

es

Rand
Deep
Rand Data

(b) Assembly.

Figure 8.9.: Cumulative number of solved problems (higher is better).

The computational overhead of evaluating the neural network is small (we produce 10
samples in 8 ms with a GPU), while most of the time is spent in optimization runs that
converge to infeasible points.

8.7. Limitations
This chapter highlights that finding a good warm start for nonlinear optimization is an
intricate problem in itself. Although the proposed method clearly outperforms randomized
initialization, we observe that one of the baselines, namely warm-starting with a solution
from the dataset chosen at random (and thus without considering the conditioning on the
scene), also offers competitive results, given its simplicity. Thus, a fundamental question is
to understand what constitutes a good warm start for nonlinear optimization and how this
might depend on the problem instance. In our work, the underlying assumption is that a
sample close to the solution manifold is a good warm start. In practice, we observe that it
is often sufficient and beneficial to have diverse samples on different bases of attraction of
the optimizer, which might vary based on the problem instance.

A future research direction is to analyze the expressivity and practical performance of
different formulations and architectures for deep generative models, comparing explicit
generative models (such as GANs and VAEs), energy-based implicit models, and diffusion-
based models.

An inherent limitation of our approach is that generative models are only applicable to
similar problems with the same number of variables and constraints. Specifically, for each
class of problems evaluated in the experiments–Pick and Place, Handover, and Assembly–we
have generated a different dataset of solutions and trained different models.

In contrast, in the following Chapter 9, we use the structure of the Factored-NLP to pro-
vide generalization across different problem classes (i.e., different types and numbers of

146

8.7. Limitations

Figure 8.10.: Sequence of sampling operations (output of the deep generative model) in Pick
and Place across six different instances. Variables are sampled in the following
order: object pose on the table, grasp, robot pick configuration, and robot place
configuration.

147

8. Deep Generative Constraint Sampling

Figure 8.11.: Seven different samples (output of the deep generative model) within the same
instance of the Assembly problem. Each row represents a different sample.
Column 1 shows the problem instance; column 2, the pick keyframe; and
column 3, the assembly keyframe.

148

8.7. Limitations

Figure 8.12.: Four pairs of initial guesses (deep generative model outputs) and solutions
(post-optimization) across different instances of the Handover problem. In
each pair of rows, the top row displays the approximate sample, and the
bottom row shows the optimized solution. The first column presents the scene,
while columns 2, 3, and 4 display the pick, handover, and place keyframes,
respectively.

149

8. Deep Generative Constraint Sampling

constraints and variables) by sharing and combining small modules, resulting in a single
universal model for different task plans. The neural architectures and applications differ, as
we predict subsets of infeasible nonlinear constraints instead of generating solutions. How-
ever, we see great potential in adapting these insights back to the generative framework.

8.8. Conclusion
In this work, we propose Deep Generative Constraint Sampling (DGCS), a novel approach
to sampling from a constraint manifold to address challenges in robotic sequential manip-
ulation. Our framework combines a deep generative sampling model, conditioned on an
image-based representation of the problem, with a nonlinear optimizer to project samples
onto the manifold. Additionally, we extend the approach to exploit a given factorization of
the problem by training a sequence of conditional generative models rather than a single
joint generator. Our empirical results confirm that the trained generative models outper-
form heuristic warm start strategies. Moreover, incorporating analytic constraints into the
training of the generative model, as well as exploiting the factorization of a given problem,
significantly enhances the efficiency, diversity, and precision of the sampling approach.

Our current framework integrates generative sampling using a neural network with subse-
quent projection through constrained optimization. A promising future direction involves
exploring the possibility of embedding the optimization algorithm as the last layer of the
generative model, while still maintaining good coverage and multimodality.

In this chapter, we fix the sequence of sampling operations by design when transforming the
Factored-NLP into a directed sampling network. As discussed in Chapter 6, the choice of the
sampling operations sequence can significantly impact performance. However, sampling
operations with deep learning are conditioned on the problem scene, providing flexibility
to capture interdependencies in the manipulation sequences and mitigating the drawbacks
of uninformed uniform sampling.

Looking forward, we aim to develop deep generative models that directly work with the
Factored-NLP, eliminating the need for manually designed directed graphical models, as
this would allow for the automatic learning of the most effective decompositions.

150

Chapter9
Learning Feasibility of Factored Nonlinear

Programs

9.1. Introduction
When a Factored Nonlinear Program (Factored-NLP) is over-constrained or infeasible, a
fundamental challenge is to extract a minimal conflict – a minimal subset of constraints that
can never be fulfilled. Traditional approaches require solving several nonlinear programs,
incrementally adding and removing constraints, and are thus computationally expensive.

In this chapter1, we propose a graph neural architecture that predicts which subsets of
variables and constraints are infeasible in a Factored-NLP. The model is trained with a
dataset of labeled subgraphs from Factored-NLPs and can make useful predictions on
larger problems than those seen during training.

As an application, we evaluate our method in robotic sequential manipulation and integrate
this model into our novel TAMP solver presented in Chapter 5. The objective is to quickly
determine which constraints fail in the trajectory optimization problems of candidate task
plans, which is one of the computational bottlenecks of our solver.

Beyond factored nonlinear programs in TAMP, our framework is applicable for detecting
infeasibility in constraint satisfaction problems, combinatorial optimization, and Boolean
satisfaction (SAT), which have broad applications in robotics, planning, and scheduling.

1This chapter is based on the publication: Ortiz-Haro, J., Ha, J. S., Driess, D., Karpas, E., and Toussaint, M. (2023).
Learning Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning. IEEE International
Conference on Robotics and Automation (ICRA) (pp. 3729-3735).

151

9. Learning Feasibility of Factored Nonlinear Programs

The foundation of our framework is built on the factored structure of manipulation planning
problems, which has been presented in Chapter 3, and further developed and analyzed with
our new factored TAMP formulation in Chapter 5.

An overview of our approach is shown in Fig. 9.1. The input to our model is directly the
graph representation of the Factored-NLP, including semantic information about variables
and constraints (e.g., a class label), and a continuous feature for each variable that encodes
geometric information about the scene. Finding the minimal infeasible subgraph (i.e., a
subset of variables and constraints of the Factored-NLP) is cast as a graph node classification
problem, and the predicted infeasible subsets are extracted with a connected component
analysis.

By leveraging the factored structure, our model is able to predict infeasibility in longer
manipulation sequences involving more objects and robots, as well as different geometric
environments – a broader generalization than our deep generative models presented in
Chapter 8, which were limited to a fixed high-level task plan.

Our experiments show that the model accelerates general algorithms for conflict extraction
by a factor of 50, and our previous heuristic algorithm for conflict detection in TAMP by a
factor of 4.

9.2. Related Work
Minimal infeasible subsets of constraints In the discrete SAT and CSP literature, a mini-
mal infeasible subset of constraints (also called a Minimal Unsatisfiable Subset of Constraints
or a Minimal Unsatisfiable Core) is usually computed by solving a sequence of SAT and
MAX-SAT problems [Liffiton and Sakallah, 2008, Marques-Silva et al., 2021, Hemery et al.,
2006].

In continuous domains, a minimal infeasible subset can be found by solving a sequence
of feasibility problems, adding and removing constraints, with linear complexity in the
number of constraints [Amaldi et al., 1999]. This search can be accelerated with a divide
and conquer strategy, with logarithmic complexity [Junker, 2004]. In convex and nonlin-
ear optimization, we can find approximate minimal subsets by solving one optimization
problem with slack variables [Shoukry et al., 2018].

In contrast, our method uses learning to directly predict minimal infeasible subsets of
variables and constraints and can be combined with these previous approaches to reduce
computational time.

Graph Neural Networks in combinatorial optimization We use Graph Neural Networks
(GNN) [Kipf and Welling, 2016, Battaglia et al., 2018, Ma and Tang, 2021] for learning in

152

9.2. Related Work

(a) Input Factored-NLP. (b) Neural message passing.

(c) Output variable scores. (d) Infeasible subgraphs.

Figure 9.1.: Overview of our approach to detecting minimal infeasible subgraphs in a
Factored-NLP. (a) The input of the model is the graph representation of the
Factored-NLP. Circles represent variables, and squares represent constraints.
(b) We perform several iterations of neural message passing using the structure
of the Factored-NLP. (c) The network outputs the probability that a variable be-
longs to a minimal infeasible subgraph. (d) We extract several minimal infeasible
subgraphs using a connected component analysis.

153

9. Learning Feasibility of Factored Nonlinear Programs

graph-structured data. Different message passing and convolutions have been proposed,
e.g., [Gilmer et al., 2017, Veličković et al., 2017]. Our architecture, targeted toward inference
in factored nonlinear programs, is inspired by previous works that approximate belief
propagation in factor graphs [Zhang et al., 2020, Satorras and Welling, 2020, Kuck et al.,
2020].

Recently, GNN models have been applied to solve NP-hard problems [Schuetz et al., 2021],
Boolean Satisfaction [Selsam et al., 2018], Max cut [Yao et al., 2019], constraint satisfaction
[Toenshoff et al., 2021], and discrete planning [Shen et al., 2020, Rivlin et al., 2020, Nir et al.,
2021]. Compared to state-of-the-art solvers, learned models achieve competitive solution
times and scalability but are outperformed in reliability and accuracy. To our knowledge,
this is the first work to use a GNN model to predict minimal infeasible subsets of constraints
in a continuous domain.

Graph Neural Networks in manipulation planning In manipulation planning, Graph Neu-
ral Networks are a popular architecture to represent the relations between movable objects
because they provide a strong relational bias and a natural generalization to include addi-
tional objects in the scene.

For example, they have been used as problem encodings to learn policies for robotic assem-
bly [Funk et al., 2022, Ghasemipour et al., 2022] and manipulation planning [Li et al., 2020],
to learn object importance and guide task and motion planning [Silver et al., 2021], and to
learn dynamical models and interactions between objects [Driess et al., 2022], [Paus et al.,
2020]. Previous works often use task-specific, object-centric representations, where the ver-
tices of the graph represent the objects, and the task is encoded in the initial feature vector
of each variable. Alternatively, our model performs message passing using the structure
of the nonlinear program of the manipulation sequence, achieving better generalization to
different task plans that fulfill different goals.

9.3. Formulation

9.3.1. Minimal Infeasible Subgraph in a Factored-NLP

Given an infeasible or over-constrained Factored-NLP 𝐺 = (𝑋𝐺 ∪ Φ𝐺 , 𝐸𝐺) with variables
𝑋𝐺 and constraints Φ𝐺 (refer to Eqs. (3.1) and (3.3)), our intention is to identify a minimal
infeasible subgraph, i.e., a subset of variables and constraints that are jointly infeasible and
cannot be reduced further.

To define it formally, a minimal infeasible subgraph 𝑀 = (𝑋𝑀 ∪Φ𝑀 , 𝐸𝑀) of a Factored-NLP
𝐺 = (𝑋𝐺 ∪ Φ𝐺 , 𝐸𝐺), is a subset of variables 𝑋𝑀 ⊆ 𝑋𝐺 and constraints Φ𝑀 ⊆ Φ𝐺 that is

154

9.3. Formulation

infeasible; yet, any proper subset of it is feasible:

𝑀 ⊆ 𝐺, ℱ (𝑀) = 0, ℱ (𝑀′) = 1, ∀𝑀′ ⊂ 𝑀, (9.1)

where ℱ (𝑀) denotes the feasibility of the Factored-NLP (see Eq. (3.4)), holding the value 1
if it is feasible and 0 otherwise.

In this chapter, we consider only minimal subgraphs in the form of variable-induced sub-
graphs because they enable a more compact representation. Given a graph 𝐺 and a sub-
set of variables 𝑋′ ⊆ 𝑋𝐺, a variable-induced subgraph 𝑀 = 𝐺[𝑋′] = (𝑋′ ∪ Φ′, 𝐸′), where
Φ′ = {𝜙 ∈ Φ𝐺 | Neigh𝐺(𝜙) ⊆ 𝑋′}, is the subgraph spanned by the variables 𝑋′. Intuitively,
𝐺[𝑋′] contains the variables 𝑋′ and all the constraints that can be evaluated with these vari-
ables. Our approach can be adapted to predict general subgraphs if required, by modifying
the proposed variable classification to constraint classification in Section 9.3.2.

A Factored-NLP can contain multiple infeasible subgraphs, and a variable 𝑥𝑖 ∈ 𝑋𝐺 can
belong to multiple infeasible subgraphs. Recall that a minimal infeasible subgraph is
connected, and a supergraph �̃� ⊇ 𝑀 of an infeasible subgraph 𝑀 is also infeasible.

9.3.2. Minimal Infeasible Subgraph as Variable Classification

Let Ω𝐺 = {𝑀𝑟 | 𝑀𝑟 ⊆ 𝐺 minimal infeasible} be the set of minimal infeasible subgraphs of a
Factored-NLP𝐺. Instead of learning the mapping 𝜔 : 𝐺 ↦→ Ω𝐺 directly, we propose to learn
an over-approximation �̃� that can efficiently be framed as binary variable classification.

We first introduce the variable-feasibility function 𝜓(𝑥𝑖 ;𝐺) that assigns a label 𝑦𝑖 ∈ {0, 1} to
each variable 𝑥𝑖 ∈ 𝑋𝐺: 𝑦𝑖 = 0 if 𝑥𝑖 belongs to some infeasible subgraph and 𝑦𝑖 = 1 otherwise.
Given such a labeled graph, we can recover the infeasible subgraphs approximately by
computing the connected components on the subgraph induced by the variables labeled 0,
i.e., 𝐺 [{𝑥𝑖 ∈ 𝑋𝐺 | 𝑦𝑖 = 0}]. Thus, we define the approximate mapping as

�̃�(𝐺) = CCA (𝐺 [{𝑥𝑖 ∈ 𝑋𝐺 | 𝑦𝑖 = 0}]) , (9.2)

where CCA denotes a connected component analysis.

The approximate mapping �̃� is exact, i.e., �̃� = 𝜔, if the infeasible subgraphs are discon-
nected. If two or more infeasible subgraphs are connected, it returns their union as a
minimal infeasible subgraph, i.e., ∪�̃� = ∪𝜔, which over-approximates the size of the origi-
nal minimal infeasible subgraph. Our neural model will be trained to emulate the labels of
the variable-feasibility function 𝜓.

We emphasize that learning the approximate function �̃� is not a real limitation. First,
because the prediction will be integrated into an algorithm that can further reduce the size
of the infeasible subgraph, if not already minimal, as shown later in Section 9.3.4. Second,

155

9. Learning Feasibility of Factored Nonlinear Programs

because finding small infeasible subgraphs, as opposed to strictly minimal, is already
useful in many applications. Finally, note that 𝜔 could be transformed into a multiclass
variable classification 𝑓 (𝑥𝑖 ;𝐺) = 𝑟𝑖 ⊆ {1, . . . , 𝑅}, where each variable may belong to multiple
classes – but this would require a complex and potentially intractable permutation invariant
formulation.

9.3.3. GNN with the Structure of a Factored-NLP

A fundamental idea of our method is to use the structure of the Factored-NLP for message
passing with Graph Neural Networks (GNN) to learn the variable-feasibility 𝜓(𝑥𝑖 ;𝐺).

In neural message passing, each variable vertex 𝑥𝑖 ∈ 𝑋𝐺 has a feature vector 𝑧𝑖 ∈ R𝑛𝑧 that is
updated with the incoming messages of the neighboring constraints. Each 𝑧𝑖 is initialized
with 𝑧0

𝑖
to encode semantic and continuous information of the variable 𝑥𝑖 (an example of

how to initialize the features in manipulation planning is shown in Section 9.4.2). The
update rule follows a two-step process: first, each constraint computes and sends back a
message to each neighboring variable, which depends on the current features of all the
neighboring variables. Second, each variable aggregates the information of the incoming
messages from the constraints and updates its feature vector,

[⊕�𝑎→𝑖]𝑖∈𝑁(𝑎) = Message𝑎([⊕𝑧𝑖]𝑖∈𝑁(𝑎)), (9.3a)
𝑧′𝑖 = Update(AGG𝑎∈𝑁(𝑖) �𝑎→𝑖 , 𝑧𝑖), (9.3b)

where �𝑎→𝑖 ∈ R𝑛� is the message from constraint 𝑎 to variable 𝑖. The operator [⊕•]𝑖 denotes
concatenation. 𝑁(𝑎) = Neigh𝐺(𝜙𝑎) is the ordered set of variables connected to the constraint
𝜙𝑎 . Conversely, 𝑁(𝑖) = Neigh𝐺(𝑥𝑖) is the set of constraints connected to variable 𝑥𝑖 . AGG is
an aggregation function, e.g., max, sum, mean, or weighted average. We use max (element-
wise) in our implementation. A graphical representation is shown in Fig. 9.2.

Update and Message𝑎 are small MLPs (Multilayer Perceptron) with learnable parameters. As
the nonlinear constraints in the Factored-NLP are not permutation invariant or symmetric,
the features 𝑧𝑖 must be concatenated in a predefined order 𝑁(𝑎)when evaluating Message𝑎 .
The function Update is shared by all vertices (which generalizes to Factored-NLPs with
additional variables). The function Message𝑎 is shared between different constraints of the
Factored-NLP that represent the same mathematical function, i.e., Message𝑎 = Message𝑏 iff
𝜙𝑎(𝑥) = 𝜙𝑏(𝑥)∀𝑥 (which generalizes to Factored-NLPs with additional constraints). For
example, in manipulation planning, all constraints that model collisions between objects
will share the same Message MLP.

The message passing update (9.3) is performed 𝐾 times, starting from the initial feature
vectors 𝑧0

𝑖
. The feature vectors after 𝐾 iterations are used for feasibility prediction with a

156

9.3. Formulation

𝑖 𝑗𝑎𝑏

�𝑎→𝑖 �𝑎→𝑗�𝑏→𝑖

[
�𝑎→𝑖 , �𝑎→𝑗

]
= Message𝑎(𝑧𝑖 , 𝑧 𝑗), �𝑏→𝑖 = Message𝑏(𝑧𝑖)

𝑧′
𝑖
= Update (AGG (�𝑎→𝑖 , �𝑏→𝑖) , 𝑧𝑖), 𝑧′

𝑗
= Update

(
�𝑎→𝑗 , 𝑧 𝑗

)
Figure 9.2.: Message passing in a Factored-NLP with two variables (𝑖 , 𝑗) and two constraints

(𝑎, 𝑏).

small MLP classifier,
�̂�𝑖 = Classifier(𝑧𝐾𝑖) . (9.4)

The number of iterations is a hyperparameter of the model, and the weights of the MLPs
may differ between message passing iterations 𝑘 = 1, . . . , 𝐾 (e.g., Message𝑎 at 𝑘 = 1, denoted
with Message1

𝑎 , is different from Message𝑘𝑎 at iteration 𝑘). The parameters of the classifier,
message, and update networks are trained end-to-end to minimize the weighted binary
cross-entropy loss between the prediction �̂�𝑖 and the variable-feasibility labels 𝑦𝑖 .

Algorithm 9.1 Conflict Extraction with a Graph Neural Network.
1: Input:
2: Factored-NLP 𝐺 = (𝑋𝐺 ∪Φ𝐺 , 𝐸𝐺) ⊲ Infeasible factored nonlinear

program
3: GNN_Model = {Message𝑘𝑎 , Update𝑘 , Classifier} ⊲ Learned GNN model
4: Solve ⊲ Algorithm provided by the user
5: Reduce ⊲ Algorithm provided by the user
6: Output: 𝑀 ⊆ 𝐺 ⊲ Minimal infeasible subgraph
7: {�̂�𝑖} = GNN_Model(𝐺)
8: 𝛿← 0.5, 𝛿𝑟 ← 1.2
9: while True do

10: 𝑋𝛿 = {𝑥𝑖 ∈ 𝑋𝐺 | �̂�𝑖 < 𝛿} ⊲ Candidate infeasible variables
11: for 𝑔 ∈ CCA(𝐺[𝑋𝛿]) do ⊲ Connected component analysis
12: feasible← Solve(𝑔)
13: if not feasible then
14: 𝑀 ← Reduce(𝑔)
15: Return 𝑀
16: end if
17: end for
18: 𝛿← 𝛿 × 𝛿𝑟
19: end while

157

9. Learning Feasibility of Factored Nonlinear Programs

9.3.4. Algorithm to Detect Minimal Infeasible Subgraphs

To account for the approximation in our variable classification formulation and small pre-
diction errors, we integrate the learned classifier into a classical algorithm to detect minimal
infeasible subgraphs.

We assume the user provides the Solve and Reduce routines, which check if a Factored-NLP
is feasible and compute a minimal infeasible subset of constraints, respectively. Reduce

is an expensive routine, as it involves solving several nonlinear programs by adding and
removing constraints. The number of evaluated NLPs—and therefore the computation
time—depends on the size of the input graph: linear with the total number of variables
according to [Amaldi et al., 1999], or logarithmic according to [Junker, 2004].

Our algorithm is outlined in Algorithm 9.1. The GNN model is evaluated once on the
input Factored-NLP and computes feasibility scores, 𝑦𝑖 , for each variable. By iteratively
increasing the classification threshold, 𝛿, we select the candidate infeasible variables, 𝑋𝛿,
with a score lower than the current threshold, 𝛿. We then generate candidate infeasible
subgraphs with connected component analysis on the variable-induced subgraph, 𝐺[𝑋𝛿],
which are evaluated with Solve. Once an infeasible subgraph is found, we use Reduce to
obtain a minimal infeasible subgraph.

A traditional conflict extraction approach would run Solve and Reduce directly on the
input Factored-NLP. The acceleration in our algorithm, therefore, comes from evaluating
these routines on small (ideally minimal) candidates. Algorithm 9.1 can be extended
to compute multiple minimal infeasible subgraphs by omitting the return statement and
adding a special check to avoid solving a supergraph of an infeasible subgraph identified
in a previous iteration.

9.4. Factored-NLP for Manipulation Planning

9.4.1. Structure of the Factored-NLP

As an application within TAMP, we use our model to predict minimal infeasibility when
computing the keyframe configurations that fulfill a high-level task plan.

When the optimization problem is infeasible, finding a minimal subset of infeasible con-
straints is crucial for understanding the cause of the infeasibility and providing valuable
feedback to the task planner, as demonstrated in our conflict-based TAMP planner (Chap-
ter 5).

The Factored-NLPs used in this chapter are generated using the formulation Planning
with Nonlinear Transition Constraints (PNTC, Section 5.3) presented in Chapter 5, which

158

9.4. Factored-NLP for Manipulation Planning

𝑎0

𝑏0

𝐴0

𝐵0

𝑞0

𝑤0

𝑎1

𝑏1

𝐴1

𝐵1

𝑞1

𝑤1

𝑎2

𝑏2

𝐴2

𝐵2

𝑞2

𝑤2

𝑎3

𝑏3

𝐴3

𝐵3

𝑞3

𝑤3

Posediff

Posediff

Ref

Ref

Ref

Ref Ref

Posediff

Posediff

Ref Grasp

Grasp Pose

Ref

Kin

Kin Kin

EqualEqual Equal

Posediff Posediff

Posediff Posediff

Figure 9.3.: Factored-NLP for the task plan ⟨pick object B with robot Q from B_init, pick object
B with robot W from robot Q, place object B with robot W on object A⟩. Circles
represent variables, and squares represent constraints. Each column symbolizes
a keyframe of the manipulation sequence. 𝑞, 𝑤 are the configurations of the two
robots; 𝐴, 𝐵 are the absolute positions of the two objects, and 𝑎, 𝑏 are the relative
poses of these objects with respect to their parent in the kinematic tree (e.g., the
table, a robot, or another object as indicated by the task plan). See the main text
and Chapter 3 for an explanation of variables and constraints.

ensures a consistent local and repeatable structure to enable generalization across different
nonlinear programs.

However, we employ a different, yet equivalent, formulation of the continuous space within
PNTC, using two continuous variables for each movable object: one indicating the absolute
position and another for the relative, along with additional constraints.

This makes the Factored-NLPs more redundant, as the absolute positions of the objects can
be deduced from their relative positions and the positions of the parent frame. Neverthe-
less, now the Factored-NLP can be formulated using a smaller number of distinct types
of nonlinear constraints. Since each type of constraint corresponds to a unique Message

network, this formulation becomes vital for generalization in scenes with more objects.

Thus, Factored-NLPs in this chapter contain three types of variables: robot configurations,
object absolute positions, and object relative positions with respect to the parent frame.
Beyond the nonlinear constraints highlighted throughout the thesis, we now incorporate a
new constraint type that ensures the geometric consistency between relative and absolute
poses of objects (Posediff).

159

9. Learning Feasibility of Factored Nonlinear Programs

In Fig. 9.3, we display the Factored-NLP corresponding to the sequence ⟨pick object B with
robot Q from B_init, pick object B with robot W from robot Q, place object B with robot W on object
A⟩, in an environment with two robots,𝑄 and𝑊 , and two objects, 𝐴 and 𝐵. For comparison,
the Factored-NLP using the original PNTC formulation for the same task plan is presented
in Fig. 5.3.

Lastly, it is worth noting that in this chapter, we do not consider trajectory variables (e.g., 𝜏𝑞
in Fig. 5.3 in Chapter 5) because the keyframe variables already provide very informative
information for evaluating geometric infeasibility.

9.4.2. Encoding of the Problem in the Initial Feature Vectors

The structure of the Factored-NLP encodes the number of objects, robots, and the task plan.
The geometric description of the environment is encoded locally in the initial feature vector
of each variable 𝑧0

𝑖
. Specifically, the initial feature vector includes the information of unary

constraints (i.e., constraints evaluated only on a single variable, which are then not added
to the message passing architecture), additional semantic class information (for example,
whether the variable represents an object or a robot, but without including a notion of a
time index or entity), and geometric information that is relevant for the constraints (for
example, the size of the objects). The dimension of 𝑧0

𝑖
is fixed, and shorter feature vectors

are padded with zeros.

For example, suppose that the Factored-NLP of Fig. 9.3 is evaluated in a scene where
robot 𝑄 is at pose 𝑇𝑄 = [0.32, 0.41, 0.56, 0.707, 0, 0, 0.707] , the start position of object 𝐴 is
𝑇𝐴 = [0.35, 0.4, 0.5, 0.707, 0, 0, 0.707] , and object 𝐴 is a box of size 𝑆𝐴 = [0.2, 0.3, 0.2]. Then the
𝑧0 of variables {𝑞0 , 𝑞1 , 𝑞2 , 𝑞3} is [1, 0, 0, 0, 0, 0, 𝑇𝑄] , where the first six components indicate
that it is a robot, and 𝑇𝑄 is the base pose. The 𝑧0 of {𝑎0 , 𝑎1 , 𝑎2 , 𝑎3} is [0, 1, 0, 0, 0, 0, 𝑇𝐴] ,
where the first components indicate that it is a relative pose with respect to the reference
position 𝑇𝐴. The 𝑧0 of {𝐴0 , 𝐴1 , 𝐴2 , 𝐴3} is [0, 0, 1, 0, 0, 0, 𝑆𝐴 , 0, 0, 0, 0] to indicate that it is
an absolute position of an object of size 𝑆𝐴.

9.5. Experimental Results
Scenario We evaluate our model in robotic sequential manipulation. The objective is
to predict minimal infeasibility of task plans that build towers and rearrange blocks into
different configurations, in scenarios containing a varying number of blocks, robots, and
movable obstacles, in different positions. See Figs. 9.4 and 9.6. The following settings are
used to generate the training dataset (4800 Factored −NLPs):

– Five movable objects: 3 blocks and 2 obstacles. Both types of objects have collision
constraints, but obstacles are larger and usually block grasps or placements.

160

9.5. Experimental Results

Figure 9.4.: TAMP scenarios. Obstacles are brown, blocks are colorful and tables are white.
Left: Training Data, Middle: + Blocks dataset, Right: + Robots dataset.

Figure 9.5.: Training Data – Different Scenes. The positions of robots, obstacles, and blocks
are randomized.

– Two robots: 7-DOF Panda robot arms, which can pick and place objects using a top
grasp.

– Different geometric scenes: the positions of the objects, robots, and tables are ran-
domized.

– Manipulation sequences of lengths 4 to 7 (length of the high-level task plan).

To evaluate the generalization capabilities of the learned model, we consider three additional
datasets:

– +Robots: we add an additional robot.

– +Blocks: we add two additional blocks.

– +Actions: this dataset contains Factored-NLPs from longer task plans (lengths of 8 to
10).

9.5.1. Data Generation

For training the GNN model, we need a set of Factored-NLPs with labeled variables to
indicate whether they belong to a minimal infeasible subset. First, we generate a set of

161

9. Learning Feasibility of Factored Nonlinear Programs

interesting task plans. Second, we evaluate the manipulation sequences on random geo-
metric scenes. To compute the feasibility labels, we adapt the conflict extraction algorithm
of Chapter 5 to find up to 10 minimal infeasible subgraphs.

9.5.2. Accuracy of the GNN Classifier

We compare our model (GNN) against a Multilayer Perceptron (MLP) and a sequential
model (MLP-SEQ), trained with the same dataset.

The MLP computes �̂�𝑖 = MLP(�̃�0
𝑖
, 𝐴, 𝐶), where �̃�0

𝑖
= [𝑧0

𝑖
, 𝑡𝑖 , 𝑒𝑖] is the feature vector of the

variable we want to classify. It concatenates the feature vector 𝑧0
𝑖

used in the GNN, with
the time index 𝑡𝑖 of the variable, and a parametrization that defines the name of the variable
𝑒𝑖 (for instance, we represent an object with its starting pose). Note that 𝑡𝑖 and 𝑒𝑖 are not
used in the GNN model because this information is encoded in the structure of the graph.
𝐴 is the encoding of the whole task plan, using small vectors to encode each token, e.g.,
{“pick”, “block1”, “l_gripper”, “table”}. To account for sequences of different lengths, we
fix a maximum length and add padding. 𝐶 is the scene parametrization and contains the
position and shapes of all possible objects and robots.

We also evaluate MLP-SEQ, a sequential model MLP(�̃�0
𝑖
, SEQ(𝐴), 𝐶) that encodes the action

sequence with a recurrent network (Gated Recurrent Units).

We first evaluate the accuracy of the models to predict if a variable belongs to a minimal
infeasible subset, see Table 9.1. Our GNN model outperforms the alternative architectures,
both in the original Train Data and, especially, in the extension datasets. Our model main-
tains a constant ∼95 % success rate across all datasets, while the performance of MLP and
MLP-SEQ drops to 48 % and 75 %, respectively. We also evaluate the accuracy of our model
to predict infeasible subgraphs, using the proposed method that combines variable classifi-
cation and connected component analysis, with the initial threshold for classification set at
𝛿 = 0.5. Our model outperforms MLP and MLP-SEQ, finding between 70 % and 57 % of the
infeasible subgraphs, and 30 %-50 % of the predicted subgraphs are minimal, see Table 9.2.
Between 34 %-48 % of the predicted infeasible graphs are actually feasible. As shown later,
these levels of accuracy, together with our iterative threshold strategy, result in a strong
acceleration.

MLP, MLP-SEQ, and GNN have the same information to make the predictions because
the Factored-NLP is a deterministic mapping of the action sequence and the geometric
scene. Although the unstructured MLP and MLP-SEQ baselines could potentially learn
this mapping, our experiments show that the representation does not emerge naturally,
confirming that a structured model yields better generalization.

162

9.5. Experimental Results

Table 9.1.: Classification accuracy. Each pair indicates the accuracy of predicting feasible
and infeasible variables.

Train Data + Blocks + Robots + Actions

GNN (94.7, 95.4) (96.1, 95.2) (95.7, 95.3) (94.6, 94.1)
MLP (93.0, 82.2) (93.4, 80.8) (93.0, 80.8) (91.0, 48.0)
MLP-SEQ (83.5, 88.1) (82.3, 88.8) (82.1, 88.8) (74.0, 75.3)

Table 9.2.: Prediction of infeasible subgraphs. Each pair indicates the ratio “found / total”
(higher is better) and “minimal / found” (higher is better).

Train Data + Blocks + Robots + Actions

GNN (71.2, 54.1) (58.9, 33.3) (70.2, 55.3) (57.1, 41.9)
MLP (58.5, 54.6) (34.5, 53.2) (55.2, 37.6) (22.1, 35.5)
MLP-SEQ (65.7, 26.0) (28.6, 21.2) (61.3, 09.5) (36.3, 11.0)

9.5.3. Finding Minimal Infeasible Subgraphs

We analyze the time required to find one minimal infeasible subgraph in an infeasible
Factored-NLP with the following algorithms:

– Oracle, which knows beforehand the minimal infeasible subgraph and executes only
a single call to Solve and Reduce on this minimal infeasible subgraph. This provides
a lower bound on the compute time.

Table 9.3.: Finding one minimal infeasible subgraph, evaluated on 100 different Factored-
NLPs. Each pair indicates the average number of evaluated NLPs (lower is better)
and the compute time (lower is better), normalized by the results of GNN+g1.

Train Data + Blocks + Robots + Actions

GNN+e (1.57, 2.25) (1.44, 2.09) (1.66, 2.14) (1.50, 2.19)
GNN+g1 (1, 1) (1, 1) (1, 1) (1, 1)
Oracle (0.83, 0.97) (0.62, 0.79) (0.83, 0.84) (0.71, 0.86)
Expert (3.66, 4.32) (3.13, 5.06) (4.33, 4.62) (3.33, 4.56)
General 2 (3.50, 64.1) (3.30, 163) (3.50, 66.5) (3.83, 128)

163

9. Learning Feasibility of Factored Nonlinear Programs

Figure 9.6.: Keyframes of a task plan in the evaluation dataset + Actions. Robots build a
tower of blocks [red, blue, green, orange], moving first an obstacle.

– General {1,2}, which are generic algorithms for conflict extraction: General 1 uses
constraint filtering [Amaldi et al., 1999], and General 2 uses QuickXplain [Junker, 2004].

– Expert is the heuristic algorithm for conflict extraction in manipulation planning pre-
sented in Chapter 5.

It exploits the temporal structure, domain relaxations, and the convergence of the
optimizer to quickly discover the conflicts.

– GNN+{e,g1} combines the prediction of our GNN model with either Expert or General
1, which are used as the Reduce routine in Algorithm 9.1.

Results are shown in Table 9.3. GNN+g1 is 60-120x faster than General 2 (which is faster
than General 1). This highlights the benefits of our approach in domains where we can
compute a dataset using General offline and train the model to get an order-of-magnitude
improvement in new problems. GNN+g1 is 4-5x faster than the Expert algorithm and only
1.2x slower than an oracle. Moreover, the acceleration provided by GNN is maintained in
all the datasets. This confirms the good accuracy and generalization of the architecture
seen in the classification results. As a side note, Expert is faster than General 2 because it
solves many small feasible NLPs first until it finds one that is infeasible (which is faster than
solving infeasible NLPs).

164

9.6. Limitations

9.5.4. Integration in a Conflict-Based TAMP Planner

We demonstrate the benefits of using deep learning to accelerate conflict extraction inside
the Factored-NLP Planner (Chapter 5). Our planner iteratively generates candidate task
plans, detects infeasible subgraphs of the Factored-NLP, and encodes this information back
into the discrete description of the problem. For this evaluation, we define 10 TAMP
problems for a reference environment in each setting: +Actions, +Robots, and +Blocks.
We report the sum (across all 10 TAMP problems) of the number of solved NLPs (lower is
better) and the computational time in the conflict extraction component of the TAMP solver.
GNN+e (which is more robust than GNN+g1 in this setting) takes only (8.33 s, 511 NLPs) in
+Actions, (9.83 s, 603 NLPs) in +Robots, and (63.9 s, 1979 NLPs) in +Blocks, and is between
2 and 3 times faster than the expert algorithm, which requires (24.2 s, 731 NLPs), (38.7 s,
1116 NLPs), and (137.9 s, 2554 NLPs).

9.6. Limitations
From a practical perspective, the limitation of our approach is that the neural model pri-
marily serves as a component within an extensive model-based pipeline for TAMP. Conflict
extraction alone is not capable of generating robot motion or suggesting the next potential
task plan.

Furthermore, our graph-based classifier, despite its potential for accurate predictions, re-
quires integration into a traditional conflict extraction algorithm to refine the identified
conflicts. Looking ahead, future research might branch out in three distinct and potentially
conflicting directions: improving the neural models to achieve impeccable predictions,
adapting the TAMP solver to handle approximate predictions, or progressively transi-
tioning from model-based TAMP solvers with integrated learning components to fully
learning-based TAMP solvers.

9.7. Conclusion
In this chapter, we have presented a neural model to predict the minimal infeasible subsets
of variables and constraints in a factored nonlinear program. The structure of the nonlinear
program is used for neural message passing, providing generalization to problems with
more variables and constraints.

Our model achieves high accuracy, and the predictions can be integrated to guide and
accelerate classical and heuristic algorithms for detecting minimal conflicts. As confirmed
in the experiments, the neural model is directly applicable as a submodule of the Factored-
NLP Planner (Chapter 5) to accelerate the conflict detection pipeline.

165

9. Learning Feasibility of Factored Nonlinear Programs

When compared to Deep Generative Constraint Sampling (Chapter 8), these graph neural
models exhibit superior generalization across varied task plans. As such, a new research
question is how to extend these ideas and insights to the generative setting.

Similar to foundational models in computer vision or natural language processing, we see
great potential in investigating general models for manipulation planning, where these
models can serve as backbones for different downstream tasks in any TAMP solver. In this
setting, graph neural networks are an attractive architecture to combine logic and geometric
information in an end-to-end, yet interpretable, manner. The structure of the graph is used
to model discrete information such as the task plan and the number of objects and robots,
and the feature vectors of nodes and edges are used to encode geometric information.

166

Chapter10
Conclusions

We conclude this thesis by summarizing the main contributions and results of this work
and by discussing some possible future directions and open challenges.

10.1. Summary of Contributions
Factored structure of Task and Motion Planning In Chapter 3, we present a refined fac-
tored representation of optimization problems within Task and Motion Planning. This
factorization naturally arises from the temporal, object-centric, and robot-centric represen-
tations of the problem, but it had not been studied in detail in previous optimization-based
TAMP solvers.

The formal definition, properties, and methods to generate these factored nonlinear pro-
grams are presented in Chapter 5. During the development of this thesis, we demonstrate
the advantages and generality of this representation, illustrating how it can represent a
wide range of diverse task plans in a unified manner, including problems involving multi-
ple robots, objects, and diverse task plans.

Unintentionally, our graph representation has come to closely resemble the factored repre-
sentation of PDDLStream [Garrett et al., 2020]. Exploiting this factorization is crucial for
designing efficient interfaces between continuous optimization and task planning. From
a sampling perspective, we can design good sampling operations that incrementally com-
pute the motion, and from an optimization perspective, we can detect infeasible subsets of
constraints and encode this information back into the task planner (Chapter 5).

We strongly believe that the factored representation of TAMP can be used to bridge the gap
between optimization and sample-based approaches to TAMP (Chapters 6 and 7), and to

167

10. Conclusions

improve the generalization and efficiency of deep learning methods for TAMP (Chapters 8
and 9).

Integrated planning and optimization for Task and Motion Planning The objective of the
first part of the thesis is to combine trajectory optimization and discrete task planning
into a unified and efficient framework for solving TAMP problems. A fundamental chal-
lenge in solving large-scale problems with hard geometric and physical constraints is to
automatically inform the task planner about motion feasibility.

In Chapters 4 and 5, we present two new conflict-based solvers for TAMP that attempt to
solve the TAMP problem by evaluating candidate task plans, identifying why plans fail
when considering the continuous constraints, and encoding this information back into the
discrete planning problem.

Our first new solver, Diverse Planning for LGP (Chapter 4), detects and encodes infeasible
prefixes of the task plan. Additionally, ideas from diverse planning and meta-reasoning
are used to choose the most promising plans to test next and to decide how much compute
effort to allocate to searching for conflicts.

In Conflict-Based Search in Factored Logic Geometric Programs (Chapter 5), we introduce a new
factored hybrid planning formulation for TAMP, which provides a more efficient interface
between discrete planning and optimization. Based on this formulation, our second solver,
the Factored-NLP Planner, can now detect any infeasible subset of nonlinear constraints
and encode this information back into the task planner, resulting in a highly efficient
bidirectional interface between task planning and motion planning.

Meta-solvers: Adaptive combination of sampling and optimization methods In the second
part of the thesis, we propose two meta-solvers: algorithms that can automatically combine
two different techniques—optimization and sampling—to compute the robot motion in
TAMP problems.

In Learning Optimal Sampling Sequences for Robotic Manipulation (Chapter 6), we begin by
considering the problem of computing the motion for a fixed task plan, which corresponds
to solving challenging factored nonlinear programs. Using a Monte Carlo Tree Search
formulation, our method automatically discovers the best sequence of sampling and/or
optimization operations to solve the problem. This adaptive algorithm outperforms both
fixed sampling sequences and full nonlinear optimization used in previous work, in terms
of the diversity and number of solutions found within a fixed amount of compute time.

In Towards Meta-Solvers for Task and Motion Planning (Chapter 7), we present a preliminary
study towards a complete TAMP meta-solver that optimizes the task plan and the robot
motion while automatically deciding whether it is better to use sequential sampling or joint

168

10.2. Open Challenges and Future Work

optimization. To this end, we first introduce a notion of a compute state that extends the
traditional discrete-continuous states with additional free states subject to constraints that
have not yet been computed.

Our first TAMP meta-solver is an informed search algorithm on this computational space.
We show that this simple search strategy can outperform sample-based and optimization-
based solvers on average compute time across diverse TAMP settings with few objects
and robots. However, further research is needed to enhance the TAMP meta-solver’s
performance for tackling large-scale problems.

Accelerated Task and Motion Planning with learning methods In the third part of the
thesis, we propose two novel ways to use learning to accelerate expensive operations in a
TAMP solver. We assume that a dataset of solutions to similar problems can be computed
offline using a model-based solver, which requires multiple expensive computations, such
as solving nonlinear programs with multiple restarts or combinatorial optimization. At
runtime, the learned models are used to accelerate our model-based solvers, providing
speed-ups on new, unseen problems. In both contributions, exploiting the Factored-NLP
representation of the problem is crucial to achieving good generalization and performance.

Deep Generative Constraint Sampling (Chapter 8) combines a deep learning model with non-
linear optimization to generate keyframes of manipulation sequences faster. In particular,
we use Generative Adversarial Networks to produce a good warm start for nonlinear opti-
mization, outperforming alternative warm start initialization strategies. Here, we transform
the Factored-NLP into a directed graphical model, to reduce sample complexity and increase
the expressivity and multimodality of the generative model.

In Learning Feasibility of Factored Nonlinear Programs (Chapter 9), we propose a classifier that
predicts which constraints in a Factored-NLP cannot be fulfilled, a fundamental step in our
conflict-based TAMP solver (Chapter 5). The model takes the structure of the Factored-NLP
as direct input, together with a local encoding of the manipulation scene, providing good
generalization across different task plans. Using this graph-based classifier, we can detect
conflicts an order of magnitude faster than classical conflict extraction strategies.

10.2. Open Challenges and Future Work
In this section, we discuss open challenges and outline several promising ideas for further
research in the field of Task and Motion Planning in robotics.

TAMP benchmarks Different TAMP methods utilize slightly varied formulations and var-
ious benchmark problems, making it challenging to compare and analyze algorithms, uti-

169

10. Conclusions

lize common tools, and draw on ideas from other research groups. Additionally, similar
problem formulations to TAMP are often studied under different names in robotics, such
as multimodal motion planning and manipulation planning, again with slightly varied
formulations and heuristics tailored to different environments. There is a clear need for
standardized benchmarks. Drawing inspiration from the discrete planning and reinforce-
ment learning communities, it is evident that we need a unified way to define the problem
(e.g., PDDL [McDermott et al., 1998] or the OpenAI-Gym interface [Brockman et al., 2016]),
and a set of different standardized scenarios (e.g., domains in PDDL and benchmarks or
datasets in RL) to evaluate our methods.

While there have been some attempts to establish TAMP benchmarks [Lagriffoul et al.,
2018], the utilization of different software tools and slightly varied problem formulations
has hindered broad adoption. A successful TAMP benchmark should define a common
interface for stating a problem and its solution, a simulator to validate any provided solution,
and interfaces that could optionally be utilized in the solvers, such as discrete abstractions
and differentiable constraints.

Moreover, our research experience underscores the need to develop superior motion plan-
ning and optimization tools. Although certain algorithmic ideas, such as sample-based
motion planning and trajectory optimization, have reached a mature state, the research
community still requires high-quality, standalone, and open-source implementations.

Optimization-based solvers for TAMP In this thesis, we have presented two TAMP solvers
that combine discrete planning and optimization with a conflict-based approach, effectively
scaling to large-scale problems involving multiple robots and objects.

However, a fundamental issue with optimization-based approaches remains, namely, con-
vergence to local minima. Because our solvers are conflict-based, a failure to find a solution
on a feasible problem due to an unfortunate initialization compromises the completeness
of our approach.

In practice, our solvers have performed very well in tabletop environments and with simple
geometric shapes, where there are few local optima in the trajectory optimization problems.
This assumption holds true for many relevant manipulation problems. However, for more
general applications, we need to address the issue of local minima, making our solvers more
robust against failed optimization attempts and allowing them to try the same problem again
with a different initialization. As discussed in the limitations of our solvers, a promising
future direction is to use soft or probabilistic conflict formulations.

Nonlinear optimization in robotics Nonlinear optimization methods are a powerful tool
in robotics and have shown great success in solving robotics problems in high-dimensional
spaces with complex constraints, e.g., [Winkler et al., 2018, Mordatch et al., 2012, Toussaint

170

10.2. Open Challenges and Future Work

et al., 2018]. Unfortunately, these results are often difficult to reproduce for non-experts, as
they require technical knowledge and experience to formulate the problem correctly (e.g.,
the selection of variables and constraints, the scaling of each term, and the warm start).

In practice, we observe that sequential conditional sampling and sample-based motion plan-
ning are more robust to the choice of hyperparameters and the exact problem formulation.
In contrast to optimization, where bad hyperparameters often lead to failure, in sampling-
based algorithms, choosing hyperparameters incorrectly often means longer solution times,
but solvers manage to find a solution.

A key difference is that sampling-based algorithms are often anytime algorithms, improv-
ing the success rate and solution cost with more compute time. The naïve way to convert
optimization methods into an anytime algorithm is to add random restarts. However, we
observe that random restarts are not informative enough to solve hard problems within a
reasonable timeframe. We believe there is great potential in more intelligent restart strate-
gies that, for instance, use both the structure of the problem and previous computations, as
explored in this thesis.

Moving forward, to increase the influence and adoption of nonlinear optimization in
robotics, it is essential to incorporate these advanced restart strategies into nonlinear solvers.
Coupled with automatic hyperparameter tuning and appropriate scaling of costs and con-
straints, this opens up interesting avenues for both research and software development.

Development of meta-solvers for TAMP – research and software infrastructure When de-
ploying TAMP systems in the real world, we aim to ensure that our planning algorithms
consistently perform quickly across all potential problems. Achieving this robustness is
only possible with TAMP solvers designed to identify the most efficient computing method
for solving current problems. Our algorithms, presented in Chapters 6 and 7, represent a
foundational step in this direction, yet they have some limitations in terms of scalability
and applicability.

Thinking in terms of computational space and optimization over computing decisions is a
very powerful idea, and we believe that this is a promising direction to pursue. However,
we require more complex models to reason about computation cost and success, to share
information between similar task plans, and to find intelligent ways to reuse previous
computations.

Further, our research on TAMP meta-solvers highlights that, in addition to research contri-
butions, there is a need for better software infrastructure and tools to combine sampling,
discrete search, and optimization into a unified framework.

171

10. Conclusions

Perception for TAMP A limitation of our work is that we assume an extremely accurate
perception module, which provides a perfect model of the world in a form that is convenient
for planning. For instance, we assume knowledge of the objects’ positions in the world,
differentiable model-based nonlinear constraints, and a low-dimensional representation
(e.g., parametric shape) of the objects we intend to manipulate. Additionally, we presume
these objects have simple geometric shapes, such as cubes, cylinders, and spheres.

An attractive and structured approach to extend our TAMP solvers to include perception is
to utilize neural-based perception modules that can directly map high-dimensional sensor
input to the required representation for planning. Recent deep learning methods have
shown great success in perception tasks, such as object detection, and pose estimation and
segmentation [He et al., 2017, Kirillov et al., 2023, Redmon et al., 2016, Labbé et al., 2020].

However, small perception errors can lead to large failures in the planning and execution
of manipulation tasks. An alternative approach is to learn directly manipulation features
or discrete states for planning. For instance, this could involve generating a discrete state
representation directly from images for high-level task plan computation [Yuan et al., 2022],
or learning manipulation features that can be used directly to synthesize motion using
trajectory optimization [Ha et al., 2022, Simeonov et al., 2022].

Learning universal policies for robotic manipulation In Part III of this thesis, we have
demonstrated how to leverage learning to accelerate expensive operations in a TAMP solver.
Although the proposed learned modules are integrated as small components in model-
based algorithms, they have limited applications as standalone components.

A natural extension is to train models that can either solve the entire TAMP problem or, at
the very least, substantial components of it, such as computing the complete motion for a
given task plan. The scope of research in this area is vast, with numerous contributions,
such as [Driess et al., 2021, Kase et al., 2020, Fang et al., 2019, Gupta et al., 2020, Ichter et al.,
2020], among many others.

Drawing from the contributions in our thesis, we aim to utilize our structured representa-
tion to enhance efficiency and generalization across a wide array of manipulation tasks. Our
future work involves applying this graph representation to develop neural universal manip-
ulation policies, which directly (or indirectly) map the current state to the subsequent action
that robots should take, all while conditioned on the high-level task plan. By leveraging the
graph structure of the optimization problem, a single policy—trainable either through im-
itation or reinforcement learning—can be adapted to various task plans in different scenes.
Graph-structured policies could be trained with diverse data across different manipulation
tasks. The resulting policies could then be applied to larger problems (e.g., those involving
more robots or objects), potentially outperforming recent transformer-based architectures
such as [Shridhar et al., 2023, Brohan et al., 2023].

172

10.3. Final Remarks

We envision that a combination of data, structure, and models will be necessary to create
a universal policy with exceptional generalization capabilities, enabling it to tackle various
tasks and environments. Structured policies hold the potential to merge learned features
from perception and contact models—which are inherently challenging to model—with
precise model-based features, such as the robot’s kinematics, joint limits, or self-collision
avoidance.

10.3. Final Remarks
In this thesis, we have studied Task and Motion Planning from a multidisciplinary perspec-
tive, combining ideas from optimization, discrete planning, and learning.

Improving TAMP solvers is not just key for the future of robotics but also a fascinating
research topic. I hope this thesis has shown that TAMP is a very interesting field, requir-
ing hybrid planning with continuous and discrete variables and constraints, and advanced
reasoning about abstraction and structure. All these concepts are essential for any robot op-
erating in our continuous world while leveraging discrete abstractions and decompositions
for more effective long-term planning.

The question of whether to integrate learning into model-based reasoning is highly pertinent
in the context of TAMP. On one hand, good approximate forward models and model-based
solvers are readily available; on the other hand, planning with such models might be
time-consuming, often too slow for real-time planning.

From a learning perspective, TAMP constitutes a compelling challenge, given the high
dimensionality, requirement for long-term planning, and multimodality. Generating new
data or training new neural networks for every distinct TAMP problem is impractical,
underscoring the essential need for generalization abilities in learning-based TAMP.

Finding the right balance between model-based approaches and learning can become even
more challenging when we consider the real world, with its complex object shapes and
perception through images or point clouds. While today it is clear that a combination
of learning and model-based methods in TAMP is required to solve complex manipula-
tion problems, this equilibrium could shift in the future. Even if TAMP systems were to
become predominantly based on data and neural networks, model-based TAMP would
continue to play a central role, providing both a dataset of diverse solutions and the correct
understanding and inductive bias for the design of efficient learning-based systems.

Beyond advancements in TAMP solvers, real-world applications will also require deeper
exploration into enhanced perception, dexterous manipulation, and dynamic replanning.
However, a deep understanding of model-based TAMP is instrumental, even when some
real challenges are not considered or are simplified.

173

10. Conclusions

From a research perspective, the journey through task and motion planning in robotics has
been enlightening, touching upon multiple paradigms in robotics. I hope the algorithms,
formulations, and discussions presented in this thesis have piqued your interest and can
serve as a starting point for further research in the field.

174

Bibliography

[Amaldi et al., 1999] Amaldi, E., Pfetsch, M. E., and Trotter, L. E. (1999). Some structural and algo-
rithmic properties of the maximum feasible subsystem problem. In Int. Conf. on Integer Progr. and
Combinatorial Optimization.

[Andreani et al., 2008] Andreani, R., Birgin, E. G., Martínez, J. M., and Schuverdt, M. L. (2008). On
augmented lagrangian methods with general lower-level constraints. SIAM Journal on Optimization,
18(4):1286–1309.

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative ad-
versarial networks. In Proceedings of the 34th International Conference on Machine Learning.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256.

[Bäckström and Nebel, 1995] Bäckström, C. and Nebel, B. (1995). Complexity results for SAS+ plan-
ning. Computational Intelligence, 11(4):625–655.

[Baier and McIlraith, 2006] Baier, J. A. and McIlraith, S. A. (2006). Planning with temporally extended
goals using heuristic search. In International Conference on Automated Planning and Scheduling, ICAPS.

[Battaglia et al., 2018] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. (2018). Relational
inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261.

[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. Dover Publications.

[Benders, 1962] Benders, J. F. (1962). Partitioning procedures for solving mixed-variables program-
ming problems. Numer. Math., 4(1):238–252.

[Bertsekas, 1979] Bertsekas, D. P. (1979). Convexification procedures and decomposition methods for
nonconvex optimization problems. Journal of Optimization Theory and Applications, 29(2):169–197.

[Bertsekas, 1997] Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334.

[Bertsimas and Stellato, 2020] Bertsimas, D. and Stellato, B. (2020). Online mixed-integer optimization
in milliseconds.

[Betts, 1998] Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of
guidance, control, and dynamics, 21(2):193–207.

175

Bibliography

[Bicchi and Kumar, 2000] Bicchi, A. and Kumar, V. (2000). Robotic grasping and contact: A review. In
Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation.
Symposia proceedings (Cat. No. 00CH37065), volume 1, pages 348–353. IEEE.

[Biere et al., 2009] Biere, A., Heule, M., and van Maaren, H. (2009). Handbook of satisfiability, volume
185. IOS press.

[Billard and Kragic, 2019] Billard, A. and Kragic, D. (2019). Trends and challenges in robot manipu-
lation. Science, 364(6446):eaat8414.

[Boddy and Dean, 1989] Boddy, M. and Dean, T. L. (1989). Solving time-dependent planning problems.
Brown University, Department of Computer Science.

[Bonet and Geffner, 2001] Bonet, B. and Geffner, H. (2001). Planning as heuristic search. Artificial
Intelligence, 129(1-2):5–33.

[Boyd et al., 2011] Boyd, S., Parikh, N., and Chu, E. (2011). Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now Publishers Inc.

[Bratman et al., 1988] Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988). Plans and resource-
bounded practical reasoning. Computational intelligence, 4(3):349–355.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
and Zaremba, W. (2016). Openai gym. CoRR, abs/1606.01540.

[Brohan et al., 2023] Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K.,
Ding, T., Driess, D., Dubey, A., Finn, C., et al. (2023). Rt-2: Vision-language-action models transfer
web knowledge to robotic control. arXiv preprint arXiv:2307.15818.

[Browne et al., 2012] Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfsha-
gen, P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of monte carlo tree
search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–43.

[Cashmore et al., 2018] Cashmore, M., Coles, A., Cserna, B., Karpas, E., Magazzeni, D., and Ruml, W.
(2018). Temporal planning while the clock ticks. In ICAPS.

[Cauligi et al., 2020] Cauligi, A., Culbertson, P., Stellato, B., Bertsimas, D., Schwager, M., and Pavone,
M. (2020). Learning mixed-integer convex optimization strategies for robot planning and control.
In 2020 59th IEEE Conference on Decision and Control (CDC), pages 1698–1705. IEEE.

[Chen et al., 2016] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).
Infogan: Interpretable representation learning by information maximizing generative adversarial
nets. CoRR, abs/1606.03657.

[Coles et al., 2012a] Coles, A., Coles, A., Olaya, A. G., Jiménez, S., López, C. L., Sanner, S., and Yoon,
S. (2012a). A survey of the seventh international planning competition. Ai Magazine, 33(1):83–88.

[Coles et al., 2012b] Coles, A. J., Coles, A., Fox, M., and Long, D. (2012b). COLIN: planning with
continuous linear numeric change. J. Artif. Intell. Res.

[Conn et al., 2013] Conn, A. R., Gould, G., and Toint, P. L. (2013). LANCELOT: a Fortran package for
large-scale nonlinear optimization (Release A), volume 17. Springer Science & Business Media.

176

Bibliography

[Cordella et al., 2004] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2004). A (sub) graph
isomorphism algorithm for matching large graphs. IEEE transactions on pattern analysis and machine
intelligence.

[Danna et al., 2007] Danna, E., Fenelon, M., Gu, Z., and Wunderling, R. (2007). Generating mul-
tiple solutions for mixed integer programming problems. In International Conference on Integer
Programming and Combinatorial Optimization, pages 280–294. Springer.

[Dantam et al., 2016] Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and Kavraki, L. E. (2016). Incre-
mental task and motion planning: A constraint-based approach. In Robotics: Science and systems.

[Dantam et al., 2018] Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and Kavraki, L. E. (2018). An
incremental constraint-based framework for task and motion planning. The International Journal of
Robotics Research, 37(10):1134–1151.

[Dantzig and Wolfe, 1960] Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear
programs. Operations research, 8(1):101–111.

[Dechter et al., 2002] Dechter, R., Kask, K., Bin, E., Emek, R., et al. (2002). Generating random solutions
for constraint satisfaction problems. In AAAI, pages 15–21.

[Deits et al., 2019] Deits, R., Koolen, T., and Tedrake, R. (2019). Lvis: learning from value func-
tion intervals for contact-aware robot controllers. In 2019 International Conference on Robotics and
Automation (ICRA), pages 7762–7768. IEEE.

[Deits and Tedrake, 2014] Deits, R. and Tedrake, R. (2014). Footstep planning on uneven terrain with
mixed-integer convex optimization. In 2014 IEEE-RAS international conference on humanoid robots,
pages 279–286. IEEE.

[Dellaert et al., 2017] Dellaert, F., Kaess, M., et al. (2017). Factor graphs for robot perception. Founda-
tions and Trends® in Robotics.

[Driess et al., 2021] Driess, D., Ha, J.-S., Tedrake, R., and Toussaint, M. (2021). Learning geometric
reasoning and control for long-horizon tasks from visual input. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 14298–14305. IEEE.

[Driess et al., 2020] Driess, D., Ha, J.-S., and Toussaint, M. (2020). Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial scene image. In Robotics:
Science and Systems 2020 (RSS 2020). RSS Foundation.

[Driess et al., 2022] Driess, D., Huang, Z., Li, Y., Tedrake, R., and Toussaint, M. (2022). Learning
multi-object dynamics with compositional neural radiance fields.

[Driess et al., 2019] Driess, D., Oguz, O., and Toussaint, M. (2019). Hierarchical task and motion
planning using logic-geometric programming (hlgp). RSS Workshop on Robust Task and Motion
Planning.

[Ebert et al., 2017] Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). Self-supervised visual planning
with temporal skip connections. In Conference on Robot Learning.

177

Bibliography

[Ermon et al., 2012] Ermon, S., Gomes, C., and Selman, B. (2012). Uniform solution sampling using
a constraint solver as an oracle. In Proceedings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, UAI’12, page 255–264, Arlington, Virginia, USA. AUAI Press.

[Fang et al., 2019] Fang, K., Zhu, Y., Garg, A., Savarese, S., and Fei-Fei, L. (2019). Dynamics learning
with cascaded variational inference for multi-step manipulation. arXiv preprint arXiv:1910.13395.

[Felner et al., 2012] Felner, A., Goldenberg, M., Sharon, G., Stern, R., Beja, T., Sturtevant, N., Schaeffer,
J., and Holte, R. (2012). Partial-expansion a* with selective node generation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 26, pages 471–477.

[Fernández-González et al., 2018] Fernández-González, E., Williams, B., and Karpas, E. (2018).
Scottyactivity: Mixed discrete-continuous planning with convex optimization. Journal of Artifi-
cial Intelligence Research, 62:579–664.

[Ferrer-Mestres et al., 2017] Ferrer-Mestres, J., Francès, G., and Geffner, H. (2017). Combined task
and motion planning as classical AI planning. CoRR.

[Fikes and Nilsson, 1971] Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the
application of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208.

[Fox and Long, 2006] Fox, M. and Long, D. (2006). Modelling mixed discrete-continuous domains for
planning. Journal of Artificial Intelligence Research.

[Frey et al., 1997] Frey, B. J., Kschischang, F. R., Loeliger, H.-A., and Wiberg, N. (1997). Factor graphs
and algorithms. In Proceedings of the Annual Allerton Conference on Communication Control and
Computing, volume 35, pages 666–680. Citeseer.

[Funk et al., 2022] Funk, N., Chalvatzaki, G., Belousov, B., and Peters, J. (2022). Learn2assemble with
structured representations and search for robotic architectural construction. In Proceedings of the
5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research, pages
1401–1411. PMLR.

[Garrett, 2021] Garrett, C. R. (2021). Sampling-based robot task and motion planning in the real
world. In Doctoral Thesis, MIT.

[Garrett et al., 2021] Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P., and
Lozano-Pérez, T. (2021). Integrated task and motion planning. Annual Review of Control, Robotics,
and Autonomous Systems.

[Garrett et al., 2018] Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. (2018). Sampling-based
methods for factored task and motion planning. The International Journal of Robotics Research.

[Garrett et al., 2020] Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P. (2020). Pddlstream: Inte-
grating symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings
of ICAPS.

[Gelly and Silver, 2007] Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in
uct. In Proceedings of the 24th international conference on Machine learning, pages 273–280.

178

Bibliography

[Gerevini et al., 2009] Gerevini, A., Haslum, P., Long, D., Saetti, A., and Dimopoulos, Y. (2009).
Deterministic planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell.

[Ghasemipour et al., 2022] Ghasemipour, S. K. S., Freeman, D., David, B., Gu, S. S., Kataoka, S., and
Mordatch, I. (2022). Blocks assemble! learning to assemble with large-scale structured reinforce-
ment learning.

[Gilmer et al., 2017] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR.

[Ginsberg and Harvey, 1992] Ginsberg, M. L. and Harvey, W. D. (1992). Iterative broadening. Artificial
Intelligence, 55(2-3):367–383.

[Gogate and Dechter, 2006] Gogate, V. and Dechter, R. (2006). A new algorithm for sampling csp
solutions uniformly at random. In International Conference on Principles and Practice of Constraint
Programming, pages 711–715. Springer.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT
Press.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information
processing systems, 27:2672–2680.

[Gulrajani et al., 2017] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
(2017). Improved training of wasserstein gans. In Advances in neural information processing systems,
pages 5767–5777.

[Gupta et al., 2020] Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman, K. (2020). Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, pages 1025–1037. PMLR.

[Ha et al., 2022] Ha, J.-S., Driess, D., and Toussaint, M. (2022). Deep visual constraints: Neural
implicit models for manipulation planning from visual input. IEEE Robotics and Automation Letters,
7(4):10857–10864.

[Ha et al., 2018] Ha, J.-S., Park, Y.-J., Chae, H.-J., Park, S.-S., and Choi, H.-L. (2018). Adaptive path-
integral autoencoders: Representation learning and planning for dynamical systems. Advances in
Neural Information Processing Systems, 31:8927–8938.

[Hadfield-Menell et al., 2016] Hadfield-Menell, D., Lin, C., Chitnis, R., Russell, S., and Abbeel, P.
(2016). Sequential quadratic programming for task plan optimization. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5040–5047. IEEE.

[Hartmann et al., 2020] Hartmann, V. N., Oguz, O. S., Driess, D., Toussaint, M., and Menges, A.
(2020). Robust task and motion planning for long-horizon architectural construction planning. In
Int. Conf. on Intelligent Robots and Systems (IROS).

179

Bibliography

[Hartmann et al., 2022] Hartmann, V. N., Orthey, A., Driess, D., Oguz, O. S., and Toussaint, M. (2022).
Long-horizon multi-robot rearrangement planning for construction assembly. IEEE Transactions on
Robotics, 39(1):239–252.

[Haslum et al., 2018] Haslum, P., Ivankovic, F., Ramirez, M., Gordon, D., Thiébaux, S., Shivashankar,
V., and Nau, D. S. (2018). Extending classical planning with state constraints: Heuristics and search
for optimal planning. Journal of Artificial Intelligence Research, 62:373–431.

[Hauser, 2016] Hauser, K. (2016). Learning the problem-optimum map: Analysis and application to
global optimization in robotics. IEEE Transactions on Robotics, 33(1):141–152.

[Hauser and Latombe, 2010] Hauser, K. and Latombe, J.-C. (2010). Multi-modal motion planning in
non-expansive spaces. The International Journal of Robotics Research, 29(7):897–915.

[Hauser and Ng-Thow-Hing, 2011] Hauser, K. and Ng-Thow-Hing, V. (2011). Randomized multi-
modal motion planning for a humanoid robot manipulation task. ĲRR, 30(6):678–698.

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969.

[Helmert, 2006] Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelli-
gence Research, 26:191–246.

[Hemery et al., 2006] Hemery, F., Lecoutre, C., Sais, L., Boussemart, F., et al. (2006). Extracting mucs
from constraint networks. In ECAI.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The ff planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence Research, 14:253–302.

[Huang et al., 2019] Huang, E., Jia, Z., and Mason, M. T. (2019). Large-scale multi-object rearrange-
ment. In 2019 International Conference on Robotics and Automation (ICRA), pages 211–218. IEEE.

[Ichter et al., 2018] Ichter, B., Harrison, J., and Pavone, M. (2018). Learning sampling distributions
for robot motion planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 7087–7094. IEEE.

[Ichter et al., 2020] Ichter, B., Sermanet, P., and Lynch, C. (2020). Broadly-exploring, local-policy trees
for long-horizon task planning. arXiv preprint arXiv:2010.06491.

[Junker, 2004] Junker, U. (2004). Preferred explanations and relaxations for over-constrained prob-
lems. In AAAI.

[Kaelbling and Lozano-Pérez, 2011] Kaelbling, L. P. and Lozano-Pérez, T. (2011). Hierarchical task
and motion planning in the now. In International Conference on Robotics and Automation (ICRA),
pages 1470–1477.

[Karpas et al., 2018] Karpas, E., Betzalel, O., Shimony, S. E., Tolpin, D., and Felner, A. (2018). Rational
deployment of multiple heuristics in optimal state-space search. Artificial Intelligence, 256:181–210.

180

Bibliography

[Kase et al., 2020] Kase, K., Paxton, C., Mazhar, H., Ogata, T., and Fox, D. (2020). Transferable task
execution from pixels through deep planning domain learning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 10459–10465. IEEE.

[Katz and Sohrabi, 2020] Katz, M. and Sohrabi, S. (2020). Reshaping diverse planning. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pages 9892–9899. AAAI Press.

[Katz et al., 2018a] Katz, M., Sohrabi, S., Udrea, O., and Winterer, D. (2018a). A novel iterative
approach to top-k planning. In Proceedings of the Twenty-Eighth International Conference on Automated
Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018, pages 132–140. AAAI
Press.

[Katz et al., 2018b] Katz, M., Sohrabi, S., Udrea, O., and Winterer, D. (2018b). A novel iterative
approach to top-k planning. In ICAPS.

[Kavraki et al., 1996] Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996). Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE transactions on
Robotics and Automation, 12(4):566–580.

[Khayatkhoei et al., 2018] Khayatkhoei, M., Singh, M., and Elgammal, A. (2018). Disconnected man-
ifold learning for generative adversarial networks. CoRR, abs/1806.00880.

[Kim et al., 2017] Kim, B., Kaelbling, L. P., and Lozano-Pérez, T. (2017). Guiding the search in con-
tinuous state-action spaces by learning an action sampling distribution from off-target samples.
CoRR, abs/1711.01391.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.

[Kingston et al., 2020] Kingston, Z., Wells, A. M., Moll, M., and Kavraki, L. E. (2020). Informing
multi-modal planning with synergistic discrete leads. In IEEE International Conference on Robotics
and Automation, pages 3199–3205.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

[Kirillov et al., 2023] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A. C., Lo, W.-Y., et al. (2023). Segment anything. arXiv preprint arXiv:2304.02643.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo plan-
ning. In European conference on machine learning, pages 282–293. Springer.

[Koehler, 1998] Koehler, J. (1998). Planning under resource constraints. In ECAI.

[Koller and Friedman, 2009] Koller, D. and Friedman, N. (2009). Probabilistic graphical models: princi-
ples and techniques. MIT press.

[Korf, 1985] Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial intelligence, 27(1):97–109.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Advances in neural information processing systems, 25.

181

Bibliography

[Krontiris and Bekris, 2016] Krontiris, A. and Bekris, K. E. (2016). Efficiently solving general rear-
rangement tasks: A fast extension primitive for an incremental sampling-based planner. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 3924–3931. IEEE.

[Kuck et al., 2020] Kuck, J., Chakraborty, S., Tang, H., Luo, R., Song, J., Sabharwal, A., and Ermon,
S. (2020). Belief propagation neural networks. Advances in Neural Information Processing Systems,
33:667–678.

[Kurutach et al., 2018] Kurutach, T., Tamar, A., Yang, G., Russell, S., and Abbeel, P. (2018). Learning
plannable representations with causal infogan.

[Labbé et al., 2020] Labbé, Y., Carpentier, J., Aubry, M., and Sivic, J. (2020). Cosypose: Consistent
multi-view multi-object 6d pose estimation. In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVII 16, pages 574–591. Springer.

[Lagriffoul et al., 2018] Lagriffoul, F., Dantam, N. T., Garrett, C., Akbari, A., Srivastava, S., and
Kavraki, L. E. (2018). Platform-independent benchmarks for task and motion planning. IEEE
Robotics and Automation Letters, 3(4):3765–3772.

[Lagriffoul et al., 2014] Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., and Karlsson, L. (2014).
Efficiently combining task and motion planning using geometric constraints. The International
Journal of Robotics Research.

[Lamiraux and Mirabel, 2021] Lamiraux, F. and Mirabel, J. (2021). Prehensile manipulation planning:
Modeling, algorithms and implementation. IEEE Transactions on Robotics, 38(4):2370–2388.

[LaValle and Kuffner, 2001] LaValle, S. and Kuffner, J. (2001). Rapidly-exploring random trees:
Progress and prospects. Algorithmic and Computational Robotics, pages 303–307.

[LaValle, 2006] LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

[Lelis, 2013] Lelis, L. H. S. (2013). Active stratified sampling with clustering-based type systems for
predicting the search tree size of problems with real-valued heuristics. In Proceedings of the Sixth
Annual Symposium on Combinatorial Search,SOCS. AAAI Press.

[Lembono et al., 2020] Lembono, T. S., Pignat, E., Jankowski, J., and Calinon, S. (2020). Generative
adversarial network to learn valid distributions of robot configurations for inverse kinematics and
constrained motion planning. CoRR, abs/2011.05717.

[Li et al., 2020] Li, R., Jabri, A., Darrell, T., and Agrawal, P. (2020). Towards practical multi-object
manipulation using relational reinforcement learning. In 2020 ieee international conference on robotics
and automation (icra), pages 4051–4058. IEEE.

[Lieder et al., 2014] Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay, N., and Griffiths, T.
(2014). Algorithm selection by rational metareasoning as a model of human strategy selection. In
Advances in neural information processing systems, pages 2870–2878.

[Liffiton and Sakallah, 2008] Liffiton, M. H. and Sakallah, K. A. (2008). Algorithms for computing
minimal unsatisfiable subsets of constraints. Journal of Automated Reasoning, 40(1):1–33.

182

Bibliography

[Lipovetzky, 2021] Lipovetzky, N. (2021). Width-based algorithms for common problems in control,
planning and reinforcement learning. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, ĲCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages
4956–4960. ĳcai.org.

[Long and Fox, 2003] Long, D. and Fox, M. (2003). The 3rd international planning competition:
Results and analysis. Journal of Artificial Intelligence Research, 20:1–59.

[Ma and Tang, 2021] Ma, Y. and Tang, J. (2021). Deep Learning on Graphs. Cambridge University Press.

[Mandalika et al., 2019] Mandalika, A., Choudhury, S., Salzman, O., and Srinivasa, S. (2019). Gener-
alized lazy search for robot motion planning: Interleaving search and edge evaluation via event-
based toggles. In Proceedings of the International Conference on Automated Planning and Scheduling,
volume 29, pages 745–753.

[Mansard et al., 2018] Mansard, N., DelPrete, A., Geisert, M., Tonneau, S., and Stasse, O. (2018).
Using a memory of motion to efficiently warm-start a nonlinear predictive controller. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 2986–2993. IEEE.

[Marques-Silva et al., 2021] Marques-Silva, J., Lynce, I., and Malik, S. (2021). Conflict-driven clause
learning sat solvers. In Handbook of satisfiability, pages 133–182. ios Press.

[McDermott et al., 1998] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D. (1998). Pddl-the planning domain definition language.

[Merkt et al., 2018] Merkt, W., Ivan, V., and Vĳayakumar, S. (2018). Leveraging precomputation with
problem encoding for warm-starting trajectory optimization in complex environments. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5877–5884. IEEE.

[Migimatsu and Bohg, 2020] Migimatsu, T. and Bohg, J. (2020). Object-centric task and motion plan-
ning in dynamic environments. Robotics and Automation Letters.

[Mildenhall et al., 2021] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi,
R., and Ng, R. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106.

[Mordatch et al., 2012] Mordatch, I., Todorov, E., and Popović, Z. (2012). Discovery of complex
behaviors through contact-invariant optimization. ACM Transactions on Graphics (TOG), 31(4):1–8.

[Mouhoub and Jafari, 2011] Mouhoub, M. and Jafari, B. (2011). Heuristic techniques for variable
and value ordering in csps. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pages 457–464.

[Mousavian et al., 2019] Mousavian, A., Eppner, C., and Fox, D. (2019). 6-dof graspnet: Variational
grasp generation for object manipulation. CoRR, abs/1905.10520.

[Murali et al., 2020] Murali, A., Mousavian, A., Eppner, C., Paxton, C., and Fox, D. (2020). 6-dof
grasping for target-driven object manipulation in clutter. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 6232–6238. IEEE.

183

Bibliography

[Nir et al., 2021] Nir, R., Shleyfman, A., and Karpas, E. (2021). Learning-based synthesis of social laws
in STRIPS. In Proceedings of the Fourteenth International Symposium on Combinatorial Search, SOCS
2021, pages 88–96. AAAI Press.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer,
New York, NY, USA, 2e edition.

[O’Ceallaigh and Ruml, 2015] O’Ceallaigh, D. and Ruml, W. (2015). Metareasoning in real-time
heuristic search. In Eighth Annual Symposium on Combinatorial Search.

[Orthey et al., 2018] Orthey, A., Escande, A., and Yoshida, E. (2018). Quotient-space motion planning.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8089–8096.
IEEE.

[Ortiz-Haro et al., 2023] Ortiz-Haro, J., Ha, J.-S., Driess, D., Karpas, E., and Toussaint, M. (2023).
Learning feasibility of factored nonlinear programs in robotic manipulation planning. In 2023
IEEE International Conference on Robotics and Automation (ICRA), pages 3729–3735. IEEE.

[Ortiz-Haro et al., 2022a] Ortiz-Haro, J., Ha, J.-S., Driess, D., and Toussaint, M. (2022a). Structured
deep generative models for sampling on constraint manifolds in sequential manipulation. In
Conference on Robot Learning, pages 213–223. PMLR.

[Ortiz-Haro et al., 2021] Ortiz-Haro, J., Hartmann, V. N., Oguz, O. S., and Toussaint, M. (2021).
Learning efficient constraint graph sampling for robotic sequential manipulation. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 4606–4612. IEEE.

[Ortiz-Haro et al., 2022b] Ortiz-Haro, J., Karpas, E., Katz, M., and Toussaint, M. (2022b). A conflict-
driven interface between symbolic planning and nonlinear constraint solving. IEEE Robotics and
Automation Letters, 7(4):10518–10525.

[Ortiz-Haro et al., 2022c] Ortiz-Haro, J., Karpas, E., Michael, K., and Toussaint, M. (2022c). Conflict-
directed diverse planning for logic-geometric programming. In Proceedings of ICAPS.

[Ota, 2004] Ota, J. (2004). Rearrangement of multiple movable objects - integration of global and
local planning methodology. In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004, volume 2, pages 1962–1967 Vol.2.

[Pascanu et al., 2017] Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L., Racanière, S., Reichert,
D., Weber, T., Wierstra, D., and Battaglia, P. (2017). Learning model-based planning from scratch.
arXiv preprint arXiv:1707.06170.

[Paus et al., 2020] Paus, F., Huang, T., and Asfour, T. (2020). Predicting pushing action effects on
spatial object relations by learning internal prediction models. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 10584–10590. IEEE.

[Paxton et al., 2019] Paxton, C., Barnoy, Y., Katyal, K. D., Arora, R., and Hager, G. D. (2019). Visual
robot task planning. In International Conference on Robotics and Automation (ICRA), pages 8832–8838.
IEEE.

184

Bibliography

[Piotrowski et al., 2016] Piotrowski, W. M., Fox, M., Long, D., Magazzeni, D., and Mercorio, F. (2016).
Heuristic planning for pddl+ domains. In Workshops at the Thirtieth AAAI Conference on Artificial
Intelligence.

[Posa et al., 2014] Posa, M., Cantu, C., and Tedrake, R. (2014). A direct method for trajectory opti-
mization of rigid bodies through contact. The International Journal of Robotics Research, 33(1):69–81.

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788.

[Richter and Westphal, 2010] Richter, S. and Westphal, M. (2010). The lama planner: Guiding cost-
based anytime planning with landmarks. Journal of Artificial Intelligence Research, 39:127–177.

[Rivlin et al., 2020] Rivlin, O., Hazan, T., and Karpas, E. (2020). Generalized planning with deep
reinforcement learning. arXiv preprint arXiv:2005.02305.

[Rossi et al., 2006] Rossi, F., Van Beek, P., and Walsh, T. (2006). Handbook of constraint programming.
Elsevier.

[Russell and Wefald, 1991] Russell, S. J. and Wefald, E. (1991). Principles of metareasoning. Artif.
Intell., 49(1-3):361–395.

[Satorras and Welling, 2020] Satorras, V. G. and Welling, M. (2020). Neural enhanced belief propaga-
tion on factor graphs. CoRR, abs/2003.01998.

[Scala et al., 2016] Scala, E., Haslum, P., Thiébaux, S., and Ramirez, M. (2016). Interval-based relax-
ation for general numeric planning. In ECAI 2016, pages 655–663. IOS Press.

[Schmitt et al., 2017] Schmitt, P. S., Neubauer, W., Feiten, W., Wurm, K. M., Wichert, G. V., and
Burgard, W. (2017). Optimal, sampling-based manipulation planning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 3426–3432. IEEE.

[Schuetz et al., 2021] Schuetz, M. J. A., Brubaker, J. K., and Katzgraber, H. G. (2021). Combinatorial
optimization with physics-inspired graph neural networks. CoRR, abs/2107.01188.

[Seipp et al., 2012] Seipp, J., Braun, M., Garimort, J., and Helmert, M. (2012). Learning portfolios of
automatically tuned planners. In Proceedings of the International Conference on Automated Planning
and Scheduling, volume 22, pages 368–372.

[Selsam et al., 2018] Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., and Dill, D. L. (2018).
Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685.

[Shen et al., 2020] Shen, W., Trevizan, F., and Thiébaux, S. (2020). Learning domain-independent
planning heuristics with hypergraph networks. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, pages 574–584.

[Shoukry et al., 2018] Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A. L., Seshia, S. A., Pappas,
G. J., and Tabuada, P. (2018). Smc: Satisfiability modulo convex programming. Proceedings of the
IEEE.

185

Bibliography

[Shperberg et al., 2019] Shperberg, S. S., Coles, A., Cserna, B., Karpas, E., Ruml, W., and Shimony,
S. E. (2019). Allocating planning effort when actions expire. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 2371–2378.

[Shridhar et al., 2023] Shridhar, M., Manuelli, L., and Fox, D. (2023). Perceiver-actor: A multi-task
transformer for robotic manipulation. In Conference on Robot Learning, pages 785–799. PMLR.

[Siciliano et al., 2008] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2008). Robotics: Modelling,
Planning and Control. Springer Publishing Company, Incorporated, 1st edition.

[Silva and Sakallah, 1999] Silva, J. P. M. and Sakallah, K. A. (1999). GRASP: A search algorithm for
propositional satisfiability. IEEE Trans. Computers, 48(5):506–521.

[Silver et al., 2021] Silver, T., Chitnis, R., Curtis, A., Tenenbaum, J. B., Lozano-Perez, T., and Kaelbling,
L. P. (2021). Planning with learned object importance in large problem instances using graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence.

[Siméon et al., 2004] Siméon, T., Laumond, J.-P., Cortés, J., and Sahbani, A. (2004). Manipulation
planning with probabilistic roadmaps. ĲRR, 23(7-8):729–746.

[Simeonov et al., 2020] Simeonov, A., Du, Y., Kim, B., Hogan, F. R., Tenenbaum, J., Agrawal, P., and
Rodriguez, A. (2020). A long horizon planning framework for manipulating rigid pointcloud
objects.

[Simeonov et al., 2022] Simeonov, A., Du, Y., Tagliasacchi, A., Tenenbaum, J. B., Rodriguez, A.,
Agrawal, P., and Sitzmann, V. (2022). Neural descriptor fields: Se (3)-equivariant object repre-
sentations for manipulation. In 2022 International Conference on Robotics and Automation (ICRA),
pages 6394–6400. IEEE.

[Song et al., 2021] Song, D., Fernbach, P., Flayols, T., Del Prete, A., Mansard, N., Tonneau, S., and
Kim, Y. J. (2021). Solving footstep planning as a feasibility problem using l1-norm minimization.
IEEE Robotics and Automation Letters, 6(3):5961–5968.

[Srivastava et al., 2014] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S. J., and Abbeel, P.
(2014). Combined task and motion planning through an extensible planner-independent interface
layer. In ICRA.

[Stilman et al., 2007] Stilman, M., Schamburek, J.-U., Kuffner, J., and Asfour, T. (2007). Manipulation
planning among movable obstacles. In Proceedings 2007 IEEE international conference on robotics and
automation, pages 3327–3332. IEEE.

[Sutanto et al., 2020] Sutanto, G., Fernández, I. M. R., Englert, P., Ramachandran, R. K., and Sukhatme,
G. S. (2020). Learning equality constraints for motion planning on manifolds.

[Tang and Hauser, 2018] Tang, G. and Hauser, K. (2018). Discontinuity-sensitive optimal control
learning by mixture of experts. CoRR, abs/1803.02493.

[Tate, 1977] Tate, A. (1977). Generating project networks. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence. Cambridge, MA, USA, August 22-25, 1977, pages 888–893. William
Kaufmann.

186

Bibliography

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press.

[Todorov, 2011] Todorov, E. (2011). A convex, smooth and invertible contact model for trajectory
optimization. In 2011 IEEE International Conference on Robotics and Automation, pages 1071–1076.
IEEE.

[Toenshoff et al., 2021] Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. (2021). Graph neural
networks for maximum constraint satisfaction. Frontiers in artificial intelligence, 3:580607.

[Tonneau et al., 2018] Tonneau, S., Del Prete, A., Pettré, J., Park, C., Manocha, D., and Mansard, N.
(2018). An efficient acyclic contact planner for multiped robots. IEEE Transactions on Robotics,
34(3):586–601.

[Toussaint, 2015] Toussaint, M. (2015). Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In International Joint Conference on Artificial Intelli-
gence, ĲCAI .

[Toussaint et al., 2018] Toussaint, M., Allen, K. R., Smith, K. A., and Tenenbaum, J. B. (2018). Differ-
entiable physics and stable modes for tool-use and manipulation planning. In Robotics: Science and
Systems XIV RSS.

[Toussaint et al., 2020] Toussaint, M., Ha, J.-S., and Driess, D. (2020). Describing physics for physical
reasoning: Force-based sequential manipulation planning. IEEE Robotics and Automation Letters.

[Toussaint and Lopes, 2017] Toussaint, M. and Lopes, M. (2017). Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains. In Int. Conf. on Robotics and Au-
tomation, ICRA.

[Toussaint et al., 2023] Toussaint, M., Ortiz-Haro, J., Hartmann, V., Karpas, E., and Hoenig, W. (2023).
Effort level search in infinite completion trees with application to task-and-motion planning.

[Tuisov and Katz, 2021] Tuisov, A. and Katz, M. (2021). The fewer the merrier: Pruning preferred
operators with novelty. In International Joint Conference on Artificial Intelligence.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

[Vega-Brown and Roy, 2020] Vega-Brown, W. and Roy, N. (2020). Asymptotically optimal planning
under piecewise-analytic constraints. In Algorithmic Foundations of Robotics XII, pages 528–543.
Springer.

[Veličković et al., 2017] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph attention networks. arXiv preprint arXiv:1710.10903.

[Wells et al., 2019] Wells, A. M., Dantam, N. T., Shrivastava, A., and Kavraki, L. E. (2019). Learning
feasibility for task and motion planning in tabletop environments. IEEE robotics and automation
letters, 4(2):1255–1262.

187

Bibliography

[Williams and Ragno, 2007] Williams, B. C. and Ragno, R. J. (2007). Conflict-directed a* and its role
in model-based embedded systems. Discret. Appl. Math., 155(12):1562–1595.

[Winkler et al., 2018] Winkler, A. W., Bellicoso, C. D., Hutter, M., and Buchli, J. (2018). Gait and
trajectory optimization for legged systems through phase-based end-effector parameterization.
IEEE Robotics and Automation Letters, 3(3):1560–1567.

[Xie et al., 2019] Xie, A., Ebert, F., Levine, S., and Finn, C. (2019). Improvisation through physical
understanding: Using novel objects as tools with visual foresight. In Proc. of Robotics: Science and
Systems (R:SS).

[Yao et al., 2019] Yao, W., Bandeira, A. S., and Villar, S. (2019). Experimental performance of graph
neural networks on random instances of max-cut. In Wavelets and Sparsity XVIII, volume 11138,
pages 242–251. SPIE.

[Yuan et al., 2022] Yuan, W., Paxton, C., Desingh, K., and Fox, D. (2022). Sornet: Spatial object-centric
representations for sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR.

[Zhang et al., 2020] Zhang, Z., Wu, F., and Lee, W. S. (2020). Factor graph neural networks. Advances
in Neural Information Processing Systems, 33:8577–8587.

[Zhao et al., 2021] Zhao, Z., Zhou, Z., Park, M., and Zhao, Y. (2021). Sydebo: Symbolic-decision-
embedded bilevel optimization for long-horizon manipulation in dynamic environments. IEEE
Access.

[Zilberstein, 2008] Zilberstein, S. (2008). Metareasoning and bounded rationality. AAAI Workshop -
Technical Report.

[Zimmermann et al., 2020] Zimmermann, S., Hakimifard, G., Zamora, M., Poranne, R., and Coros,
S. (2020). A multi-level optimization framework for simultaneous grasping and motion planning.
IEEE Robotics and Automation Letters, 5(2):2966–2972.

188

Appendix A.

Complete List of Publications

Journal Papers

1. Ortiz-Haro, J., Karpas, E., Katz, M., and Toussaint, M. (2022). A Conflict-Driven In-
terface Between Symbolic Planning and Nonlinear Constraint Solving. IEEE Robotics
and Automation Letters, 7(4), (pp. 10518-10525).

Conferences Papers

1. Hartmann, V. N., Ortiz-Haro, J., and Toussaint, M. (2023). Efficient Path Planning In
Manipulation Planning Problems by Actively Reusing Validation Effort. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

2. Ortiz-Haro, J., Ha, J. S., Driess, D., Karpas, E., and Toussaint, M. (2023). Learning
Feasibility of Factored Nonlinear Programs in Robotic Manipulation Planning. IEEE
International Conference on Robotics and Automation (ICRA) (pp. 3729-3735).

3. Braun, C. V., Ortiz-Haro, J., Toussaint, M., and Oguz, O. S. (2022). Rhh-lgp: Receding
Horizon and Heuristics-Based Logic-Geometric Programming for Task and Motion
Planning. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 13761-13768).

4. Kamat, J., Ortiz-Haro, J., Toussaint, M., Pokorny, F. T., and Orthey, A. (2022). Bitkomo:
Combining Sampling and Optimization for Fast Convergence in Optimal Motion Plan-
ning. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(pp. 4492-4497).

5. Ortiz-Haro, J., Karpas, E., Toussaint, M., and Katz, M. (2022). Conflict-Directed Di-
verse Planning for Logic-Geometric Programming. In Proceedings of the International
Conference on Automated Planning and Scheduling (Vol. 32, pp. 279-287).

189

Appendix A. Complete List of Publications

6. Hoenig, W., Ortiz-Haro, J., and Toussaint, M. (2022). db-A*: Discontinuity-Bounded
Search for Kinodynamic Mobile Robot Motion Planning. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (pp. 13540-13547).

7. Ortiz-Haro, J., Ha, J. S., Driess, D., and Toussaint, M. (2022). Structured Deep Gener-
ative Models for Sampling on Constraint Manifolds in Sequential Manipulation. In
Conference on Robot Learning (pp. 213-223). PMLR.

8. Ortiz-Haro, J., Hartmann, V. N., Oguz, O. S., and Toussaint, M. (2021). Learning
Efficient Constraint Graph Sampling for Robotic Sequential Manipulation. IEEE In-
ternational Conference on Robotics and Automation (ICRA) (pp. 4606-4612).

Preprints

1. Ortiz-Haro, J., Hoenig, W., Hartmann, V., and Toussaint, M. (2023). iDb-A*: Iterative
Search and Optimization for Optimal Kinodynamic Motion Planning. Submitted to
IEEE Transactions on Robotics (T-RO).

2. Moldagalieva, A., Ortiz-Haro, J., Toussaint, M., and Hoenig, W. (2023). db-CBS:
Discontinuity Bounded Conflict-Based Search for Multi-Robot Kinodynamic Motion
Planning. arXiv preprint arXiv:2309.16445. Submitted to ICRA.

3. Grote, P., Ortiz-Haro, J., Toussaint, M., and Oguz, O. S. (2023). Neural Field Repre-
sentations of Articulated Objects for Robotic Manipulation Planning. arXiv preprint
arXiv:2309.07620. Submitted to ICRA.

4. Wahba, K., Ortiz-Haro, J., Toussaint, M., and Hoenig, W. (2023). Kinodynamic Mo-
tion Planning for a Team of Multirotors Transporting a Cable-Suspended Payload in
Cluttered Environments. arXiv preprint arXiv:2310.03394. Submitted to ICRA.

5. Toussaint, M., Ortiz-Haro, J., Hartmann, V., Karpas, E., and Hoenig, W. (2023). Ef-
fort Level Search in Infinite Completion Trees with Application to Task-and-Motion
Planning. Submitted to ICRA.

6. Levit, S., Ortiz-Haro, J., and Toussaint, M. (2023). Solving Sequential Manipulation
Puzzles by Finding Easier Subproblems. Submitted to ICRA.

Workshop Papers

1. Rehberg, W., Ortiz-Haro, J., Toussaint, M., and Hoenig, W. (2023). Comparison of
Optimization-Based Methods for Energy-Optimal Quadrotor Motion Planning. arXiv
preprint arXiv:2304.14062. Aerial Robotics Workshop ICRA.

190

2. Hoenig, W., Ortiz-Haro, J., and Toussaint, M. (2022). Benchmarking Sampling-,
Search-, and Optimization-based Approaches for Time-Optimal Kinodynamic Mo-
bile Robot Motion Planning. Motion Planning Workshop IROS.

Master’s and Bachelor’s Theses

1. Weingart, A. (2023) Efficient Kinodynamic Motion Planning with Reinforcement
Learning Policies. Master’s Thesis in Computer Science (TU-Berlin). Co-supervision:
Ortiz-Haro, J., and Hoenig, W.

2. Groete, P. (2023) Neural Scene Representations for Sequential Reasoning. Master’s
Thesis in Computer Science (TU-Berlin). Co-supervision: Ortiz-Haro, J., and Oguz,
O.

3. Rehberg, W. (2022) SCP and k-Order Motion Optimization for Cooperative Multi-
rotor Teams. Master’s Thesis in Computer Science (TU-Berlin). Co-supervision:
Ortiz-Haro, J., and Hoenig, W.

4. Kamat, J. (2022) Combining Sampling and Optimization for Optimal Motion Planning.
Master’s Thesis in Mathematics (BITS and TU-Berlin). Co-supervision: Ortiz-Haro, J.,
and Orthey, A.

5. Oedi, P. (2022) Constrained Sampling - A Study on Methods for Sampling from Con-
straint Manifolds. Master’s Thesis in Computer Science (TU-Berlin). Co-supervision:
Ortiz-Haro, J., and Ha, J.

191

	Acknowledgements
	Abstract
	Zusammenfassung
	Resumen
	Resum
	Introduction
	Sampling and Optimization Methods for Task and Motion Planning
	Accelerating Model-Based Solvers with Deep Learning
	The Factored Structure of Task and Motion Planning
	Reading Guide and Statement of Contributions

	Background
	Nonlinear Programs in Robotics
	Classical Planning
	Logic Geometric Programming
	Multi-Bound Tree Search

	Related Work in Task and Motion Planning

	Factored Structure of Task and Motion Planning
	Factored-NLP – Definition and Properties
	Pick and Place – The Basic Building Block
	Complex Manipulation Sequences

	Integrated Planning and Optimization for Task and Motion Planning
	Diverse Task Planning for Solving Logic Geometric Programs
	Introduction
	Related Work
	Factorization of the Discrete State Space
	Diverse Task Planning for LGP
	Prefixes as Conflicts
	Forbidding Plans by Prefixes
	Feasibility Checking

	Metareasoning for Conflict Extraction
	Diversity Criteria and Complete Algorithm
	Empirical Evaluation
	Benchmarks
	Baselines
	Results

	Limitations
	Conclusions

	Conflict-Based Search in Factored Logic Geometric Programs
	Introduction
	Related Work
	Problem Formulation
	Factored-NLP: a Bidirectional Interface Between Task and Motion
	Overview: Factored-NLP Planner
	Finding Small Infeasible Subgraphs
	Reformulation of the Discrete Planning Task
	Experimental Results
	Relaxations for Finding Infeasible Subgraphs
	Benchmark
	Ablation Study
	Scalability
	Real-Time Planning in the Real World

	Limitations
	Conclusion

	Meta-Solvers: Adaptive Combination of Sampling and Optimization Methods
	Learning Optimal Sampling Sequences for Robotic Manipulation
	Introduction
	Related Work
	Sampling Sequences in the Pick and Place Task Plan
	Sequential Sampling in Factored-NLPs as a Markov Decision Process
	Choosing Computational Operations with Monte-Carlo Tree Search
	Upper Confidence Tree (UCT)
	Pruning the Sampling Tree Using the Factored-NLP
	Family of Problems and Tree Warm Start

	Experimental Results
	Scenarios
	Computational Operations
	Number of Samples and Approximate Coverage

	Limitations
	Conclusion

	Towards Meta-Solvers for Task and Motion Planning
	Introduction
	Related Work
	The Gap Between Sampling and Optimization Approaches
	The TAMP Computation Tree
	An Example of a TAMP Computation Tree and Computational States
	A Practical Meta-Solver for TAMP
	Algorithm

	Analyzing and Designing TAMP Solvers with the TAMP Computation Tree
	Experimental Results
	Example Execution of the Three Algorithms
	Comparison
	Discussion of Scalability

	Limitations
	Conclusion

	Accelerated Task and Motion Planning with Learning Methods
	Deep Generative Constraint Sampling
	Introduction
	Related Work
	Sampling on a Constraint Manifold
	Training Deep Generative Models to Sample on Constraint Manifolds
	Wasserstein Distance and Adversarial Formulation

	Structured Generative Model by Exploiting Factorization
	Directed Graphical Model and Sequential Sampling
	The Advantage of Factorization for Modeling Multimodality

	Experiments
	Image-Based Problem Representation
	Scenarios
	Ablation Study
	Benchmark: Generative Models in Nonlinear Optimization

	Limitations
	Conclusion

	Learning Feasibility of Factored Nonlinear Programs
	Introduction
	Related Work
	Formulation
	Minimal Infeasible Subgraph in a Factored-NLP
	Minimal Infeasible Subgraph as Variable Classification
	GNN with the Structure of a Factored-NLP
	Algorithm to Detect Minimal Infeasible Subgraphs

	Factored-NLP for Manipulation Planning
	Structure of the Factored-NLP
	Encoding of the Problem in the Initial Feature Vectors

	Experimental Results
	Data Generation
	Accuracy of the GNN Classifier
	Finding Minimal Infeasible Subgraphs
	Integration in a Conflict-Based TAMP Planner

	Limitations
	Conclusion

	Conclusions
	Summary of Contributions
	Open Challenges and Future Work
	Final Remarks

	Bibliography
	Appendix Complete List of Publications

