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Deep Generative Constraint Sampling (DGCS)

0 - New instance
Image representation

1 - Approximate
sample with deep
generative model

2 - Solution with
nonlinear optimizer

Sampling Framework

Goal: Sample on a parametric constraint manifold,
Mτ = {x ∈ Rn s.t φeq(x ; τ ) = 0, φineq(x ; τ ) ≤ 0} ,

φeq(x ; τ ), φineq(x ; τ ) nonlinear piecewise differentiable vector functions.
τ ∈ Rm parametrization of current problem instance.

Sample on a constraint manifold

1. Sample x0 ∼ Pθ(τ )
2. x ← Π(x0), Project toMτ with a nonlinear optimizer

min
x
||x − x0||2 s.t φeq(x ; τ ) = 0; φineq(x ; τ ) ≤ 0

Training Deep Generative Models

Deep generative model x̃ ∼ Pθ(τ ) with x̃ = Gθ(z , τ ), z ∼ Pz

Pz is a multidimensional Gaussian and Gθ is a neural network.
Analytical features of the support of the distribution,

φ(x ; τ ) = [φeq(x ; τ ),max(0, φineq(x ; τ ))]

Sample diversity: regularize with respect to a reference distribution Pr
(Dataset of solutions {xi , τi}) with Wasserstein distance W ,

minE
τ

W (Pθ(τ ),Pr(τ )) + β E
x̃∼Pθ
||φ(x̃ ; τ )||2 ,

Wasserstein GAN [1] formulation. Minimax game (stochastic gradient descent)
between the critic network D and the generator G ,

min
G

max
D

E
τ

E
x∼Pr

D(x ; τ )− E
x̃∼Pθ

D(x̃ ; τ )−λ E
x̂∼Px̂

(‖∇D(x̂ ; τ )‖ − 1)2+β E
x̃∼Pθ
‖φ (x̃ ; τ )‖2

Structure: Constraint Graphs

Exploit factorization of the problem [3]. Constraint graph representation.
x = {x1, . . . , xN} , φ(x ; τ ) = {φ1, . . . , φL} .
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Constraints: Kinematic, Grasp, Position and Collision avoidance.

Directed Graphical Model and Sequential Sampling

•Factorization of the joint probability based on the graph structure.
•Train conditional models with the marginals of the original data.
Example: Pick and Place

P(p, t, q1, q2) = P(p) P(t|p) P(q1|t) P(q2|t, p) ,
1 2 3 4 5

Advantages:
1. Reduce sample complexity and partition of conditioning
2. Improve Multimodality and training stability

Image-Based Problem Parametrization

color depth mask initial mask goal mask obs [2]

Experiments

1. Pick and Place
2. Handover
3. Assembly

Ablation Study (Pick and Place)

Seeds Solutions
Coverage Precision Error Coverage Precision Success

Big NN 0.81 0.7 8.38 0.58 0.39 0.46
Big NN + analytical 0.79 0.53 1.21 0.75 0.41 0.43
Structure NN 0.6 0.62 8.09 0.41 0.44 0.56
Structure NN + analytical 0.57 0.47 1.46 0.44 0.28 0.78

Benchmark: Warmstart Nonlinear Optimization
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(a) Handover
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(b) Assembly
Estimated number of trials necessary to solve an instance.

Deep (deep generative model with structure + analytical); Baselines: Rand
(random value) and Rand Data (random point of dataset of solutions).

Conclusion

•DGCS combines a deep generative model with nonlinear optimization
•Contributions: Structure and analytical features
•Outperform heuristic warmstart
Future Work 1 - Generalization to different problem classes 2 - Optimization as
the last layer of the neural network.
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